Show simple item record

Core pathways controlling shoot meristem maintenance

dc.contributor.authorLee, Chungheeen_US
dc.contributor.authorClark, Steven E.en_US
dc.date.accessioned2013-09-04T17:18:23Z
dc.date.available2014-10-06T19:17:41Zen_US
dc.date.issued2013-09en_US
dc.identifier.citationLee, Chunghee; Clark, Steven E. (2013). "Core pathways controlling shoot meristem maintenance." Wiley Interdisciplinary Reviews: Developmental Biology 2(5): 671-684. <http://hdl.handle.net/2027.42/99612>en_US
dc.identifier.issn1759-7684en_US
dc.identifier.issn1759-7692en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99612
dc.description.abstractEssential to the function of shoot meristems in plants to act as sites of continuous organ and tissue formation is the ability of cells within the meristem to remain undifferentiated and proliferate indefinitely. These are characteristics of the stem cells within meristems that are critical for their growth properties. Stem cells are found in tight association with the stem cell niche—those cells that signal to maintain stem cells. Shoot meristems are unique among stem cell systems in that the stem cell niche is a constantly changing population of recent daughter stem cells. Recent progress from Arabidopsis and other systems have uncovered a large number of genes with defined roles in meristem structure and maintenance. This review will focus on well‐studied pathways that represent signaling between the stem cells and the niche, that prevent ectopic differentiation of stem cells, that regulate the chromatin status of stem cell factors, and that reveal intersection of hormone signaling and meristem maintenance. WIREs Dev Biol 2013, 2:671–684. doi: 10.1002/wdev.110 For further resources related to this article, please visit the WIREs website .en_US
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.titleCore pathways controlling shoot meristem maintenanceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USAen_US
dc.identifier.pmid24014453en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99612/1/wdev110.pdf
dc.identifier.doi10.1002/wdev.110en_US
dc.identifier.sourceWiley Interdisciplinary Reviews: Developmental Biologyen_US
dc.identifier.citedreferenceTucker MR, Hinze A, Tucker EJ, Takada S, Jurgens G, Laux T. Vascular signalling mediated by ZWILLE potentiates WUSCHEL function during shoot meristem stem cell development in the Arabidopsis embryo. Development 2008, 135: 2839 – 2843.en_US
dc.identifier.citedreferenceSuzuki T, Inagaki S, Nakajima S, Akashi T, Ohto MA, Kobayashi M, Seki M, Shinozaki K, Kato T, Tabata S, et al. A novel Arabidopsis gene TONSOKU is required for proper cell arrangement in root and shoot apical meristems. Plant J 2004, 38: 673 – 684.en_US
dc.identifier.citedreferenceKwon CS, Chen C, Wagner D. WUSCHEL is a primary target for transcriptional regulation by SPLAYED in dynamic control of stem cell fate in Arabidopsis. Genes Dev 2005, 19: 992 – 1003.en_US
dc.identifier.citedreferenceHan P, Li Q, Zhu YX. Mutation of Arabidopsis BARD1 causes meristem defects by failing to confine WUSCHEL expression to the organizing center. Plant Cell 2008, 20: 1482 – 1493.en_US
dc.identifier.citedreferenceMuller J, Verrijzer P. Biochemical mechanisms of gene regulation by polycomb group protein complexes. Curr Opin Genet Dev 2009, 19: 150 – 158.en_US
dc.identifier.citedreferenceSchuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by polycomb and trithorax proteins. Cell 2007, 128: 735 – 745.en_US
dc.identifier.citedreferenceMartin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 2005, 6: 838 – 849.en_US
dc.identifier.citedreferenceWeake VM, Workman JL. Histone ubiquitination: triggering gene activity. Mol Cell 2008, 29: 653 – 663.en_US
dc.identifier.citedreferenceHennig L, Derkacheva M. Diversity of Polycomb group complexes in plants: same rules, different players? Trends Genet 2009, 25: 414 – 423.en_US
dc.identifier.citedreferencePien S, Grossniklaus U. Polycomb group and trithorax group proteins in Arabidopsis. Biochim Biophys Acta 2007, 1769: 375 – 382.en_US
dc.identifier.citedreferenceSchatlowski N, Creasey K, Goodrich J, Schubert D. Keeping plants in shape: polycomb‐group genes and histone methylation. Semin Cell Dev Biol 2008, 19: 547 – 53.en_US
dc.identifier.citedreferenceSchubert D, Primavesi L, Bishopp A, Roberts G, Doonan J, Jenuwein T, Goodrich J. Silencing by plant Polycomb‐group genes requires dispersed trimethylation of histone H3 at lysine 27. Embo J 2006, 25: 4638 – 4649.en_US
dc.identifier.citedreferenceGaudin V, Libault M, Pouteau S, Juul T; Zhao G, Lefebvre D, Grandjean O. Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis. Development 2001, 128: 4847 – 4858.en_US
dc.identifier.citedreferenceKotake T, Takada S, Nakahigashi K, Ohto M, Goto K. Arabidopsis TERMINAL FLOWER 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes. Plant Cell Physiol 2003, 44: 555 – 564.en_US
dc.identifier.citedreferenceTurck F, Roudier F, Farrona S, Martin‐Magniette ML, Guillaume E, Buisine N, Gagnot S, Martienssen RA, Coupland G, Colot V. Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet 2007, 3: e86.en_US
dc.identifier.citedreferenceXu L, Shen WH. Polycomb silencing of KNOX genes confines shoot stem cell niches in Arabidopsis. Curr Biol 2008, 18: 1966 – 1971.en_US
dc.identifier.citedreferenceBarrero JM, Gonzalez‐Bayon R, del Pozo JC, Ponce MR, Micol JL. INCURVATA2 encodes the catalytic subunit of DNA polymerase alpha and interacts with genes involved in chromatin‐mediated cellular memory in Arabidopsis thaliana. Plant Cell 2007, 19: 2822 – 2838.en_US
dc.identifier.citedreferenceGraf P, Dolzblasz A, Wurschum T, Lenhard M, Pfreundt U, Laux T. MGOUN1 encodes an Arabidopsis type IB DNA topoisomerase required in stem cell regulation and to maintain developmentally regulated gene silencing. Plant Cell 2010, 22: 716 – 728.en_US
dc.identifier.citedreferenceKerstetter RA, Hake S. Shoot meristem formation in vegetative development. The Plant Cell 1997, 9: 1001 – 1010.en_US
dc.identifier.citedreferenceLyndon RF. Control of organogenesis at the shoot apex. New Phytol 1994, 128: 1 – 18.en_US
dc.identifier.citedreferenceLyndon RF. The Shoot Apical Meristem: Its Growth and Development. Cambridge, Cambridge University Press; 1998.en_US
dc.identifier.citedreferenceMedford JI, Behringer FJ, Callos JD, Feldmann KA. Normal and abnormal development in the Arabidopsis vegetative shoot apex. Plant Cell 1992, 4: 631 – 643.en_US
dc.identifier.citedreferenceSteeves TA, Sussex IM. Patterns in Plant Development. 2nd ed. New York: Cambridge University Press; 1989.en_US
dc.identifier.citedreferenceHa CM, Jun JH, Fletcher JC. Shoot apical meristem form and function. Curr Top Dev Biol 2010, 91: 103 – 140.en_US
dc.identifier.citedreferenceJürgens G, Mayer U, Busch M, Lukowitz W, Laux T. Pattern formation in the Arabidopsis embryo: a genetic perspective. Phil Trans R Soc Lond B Biol Sci 1995, 350: 19 – 25.en_US
dc.identifier.citedreferenceJürgens G. Apical‐basal pattern formation in Arabidopsis embryogenesis. Embo J 2001, 20: 3609 – 3616.en_US
dc.identifier.citedreferenceLaux T, Wurschum T, Breuninger H. Genetic regulation of embryonic pattern formation. Plant Cell 2004, 16 (suppl): S190 – S202.en_US
dc.identifier.citedreferenceLong JA, Barton MK. The development of apical embryonic pattern in Arabidopsis. Development 1998, 125: 3027 – 3035.en_US
dc.identifier.citedreferenceBarton MK. Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Developmental Biology 2010, 341: 95 – 113.en_US
dc.identifier.citedreferenceClark SE. Cell signalling at the shoot meristem. Nat Rev Mol Cell Biol 2001, 2: 276 – 284.en_US
dc.identifier.citedreferenceClark SE, Jacobsen SE, Levin JZ, Meyerowitz EM. The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development 1996, 122: 1567 – 1575.en_US
dc.identifier.citedreferenceLaux T, Mayer KF, Berger J, Jurgens G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 1996, 122: 87 – 96.en_US
dc.identifier.citedreferenceCarles CC, Fletcher JC. Shoot apical meristem maintenance: the art of a dynamic balance. Trends Plant Sci 2003, 8: 394 – 401.en_US
dc.identifier.citedreferenceClark SE. Organ formation at the vegetative shoot meristem. Plant Cell 1997, 9: 1067 – 1076.en_US
dc.identifier.citedreferenceDodsworth S. A diverse and intricate signaling network regulates stem cell fate in the shoot apical meristem. Dev Biol 2009, 336: 1 – 9.en_US
dc.identifier.citedreferenceFurner IJ, Pumfrey JE. Cell fate in the shoot apical meristem of Arabidopsis thaliana. Development 1992, 115: 755 – 764.en_US
dc.identifier.citedreferenceIrish VF, Sussex IM. A fate map of the Arabidopsis embryonic shoot apical meristem. Development 1992, 115: 745 – 753.en_US
dc.identifier.citedreferenceStewart RN, Blakeslee AF, Avery AG. Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy periclinal chimaeras. Am J Bot 1940, 27: 875 – 905.en_US
dc.identifier.citedreferenceStewart RN, Dermen H. Flexibility in ontogeny as shown by the contribution of the shoot apical layers to leaves of periclinal chimeras. Am J Bot 1975 62: 935 – 947.en_US
dc.identifier.citedreferenceMayer KF, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 1998, 95: 805 – 815.en_US
dc.identifier.citedreferenceSchoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 2000, 100: 635 – 644.en_US
dc.identifier.citedreferenceSmyth DR, Bowman JL, Meyerowitz EM. Early flower development in Arabidopsis. Plant Cell 1990, 2: 755 – 767.en_US
dc.identifier.citedreferenceClark SE, Running MP, Meyerowitz EM. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 1993, 119: 397 – 418.en_US
dc.identifier.citedreferenceClark SE, Running MP, Meyerowitz EM. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 1995, 121: 2057 – 2067.en_US
dc.identifier.citedreferenceKayes JM, Clark SE. CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 1998, 125: 3843 – 3851.en_US
dc.identifier.citedreferenceSong SK, Lee MM, Clark SE. POL and PLL1 phosphatases are CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells. Development 2006, 133: 4691 – 4698.en_US
dc.identifier.citedreferenceYadav RK, Perales M, Gruel J, Girke T, Jonsson H, Reddy GV. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev 2011, 25: 2025 – 2030.en_US
dc.identifier.citedreferenceBrand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 2000, 289: 617 – 619.en_US
dc.identifier.citedreferenceClark SE, Williams RW, Meyerowitz EM. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 1997, 89: 575 – 585.en_US
dc.identifier.citedreferenceDeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark SE. The CLAVATA1‐related BAM1, BAM2 and BAM3 receptor kinase‐like proteins are required for meristem function in Arabidopsis. Plant J 2006, 45: 1 – 16.en_US
dc.identifier.citedreferenceFletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 1999, 283: 1911 – 1914.en_US
dc.identifier.citedreferenceJeong S, Trotochaud AE, Clark SE. The Arabidopsis CLAVATA2 gene encodes a receptor‐like protein required for the stability of the CLAVATA1 receptor‐like kinase. Plant Cell 1999, 11: 1925 – 1934.en_US
dc.identifier.citedreferenceMuller R, Bleckmann A, Simon R. The receptor kinase CORYNE of Arabidopsis transmits the stem cell‐limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell 2008, 20: 934 – 946.en_US
dc.identifier.citedreferenceNimchuk ZL, Tarr PT, Meyerowitz EM. An evolutionarily conserved pseudokinase mediates stem cell production in plants. Plant Cell 2011, 23: 851 – 854.en_US
dc.identifier.citedreferenceSong SK, Clark SE. POL and related phosphatases are dosage‐sensitive regulators of meristem and organ development in Arabidopsis. Dev Biol 2005, 285: 272 – 284.en_US
dc.identifier.citedreferenceYu LP, Miller AK, Clark SE. POLTERGEIST encodes a protein phosphatase 2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems. Curr Biol 2003, 13: 179 – 188.en_US
dc.identifier.citedreferenceReddy GV, Meyerowitz EM. Stem‐cell homeostasis and growth dynamics can be uncoupled in the Arabidopsis shoot apex. Science 2005, 310: 663 – 667.en_US
dc.identifier.citedreferenceCock JM, McCormick S. A large family of genes that share homology with CLAVATA3. Plant Physiol 2001, 126: 939 – 942.en_US
dc.identifier.citedreferenceDeYoung BJ, Clark SE. Signaling through the CLAVATA1 receptor complex. Plant Mol Biol 2001, 46: 505 – 513.en_US
dc.identifier.citedreferenceOelkers K, Goffard N, Weiller GF, Gresshoff PM, Mathesius U, Frickey T. Bioinformatic analysis of the CLE signaling peptide family. BMC Plant Biol 2008, 8: 1.en_US
dc.identifier.citedreferenceKondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y. A plant peptide encoded by CLV3 identified by in situ MALDI‐TOF MS analysis. Science 2006, 313: 845 – 848.en_US
dc.identifier.citedreferenceKondo T, Nakamura T, Yokomine K, Sakagami Y. Dual assay for MCLV3 activity reveals structure‐activity relationship of CLE peptides. Biochem Biophys Res Commun 2008, 377: 312 – 316.en_US
dc.identifier.citedreferenceNi J, Clark SE. Evidence for functional conservation, sufficiency, and proteolytic processing of the CLAVATA3 CLE domain. Plant Physiol 2006, 140: 726 – 733.en_US
dc.identifier.citedreferenceNi J, Guo Y, Jin H, Hartsell J, Clark SE. Characterization of a CLE processing activity Plant Mol Biol 2011, 75: 67 – 75.en_US
dc.identifier.citedreferenceOhyama K, Shinohara H, Ogawa‐Ohnishi M, Matsubayashi Y. A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 2009, 5: 578 – 580.en_US
dc.identifier.citedreferenceLenhard M, Laux T. Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development 2003, 130: 3163 – 3173.en_US
dc.identifier.citedreferenceNimchuk ZL, Tarr PT, Ohno C, Qu X, Meyerowitz EM. Plant stem cell signaling involves ligand‐dependent trafficking of the CLAVATA1 receptor kinase. Curr Biol 2011, 21: 345 – 352.en_US
dc.identifier.citedreferenceRojo E, Sharma VK, Kovaleva V, Raikhel NV, Fletcher JC. CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell 2002, 14: 969 – 977.en_US
dc.identifier.citedreferenceBleckmann A, Weidtkamp‐Peters S, Seidel CA, Simon R. Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. Plant Physiol 2010, 152: 166 – 176.en_US
dc.identifier.citedreferenceGuo Y, Han L, Hymes M, Denver R, Clark SE. CLAVATA2 forms a distinct CLE‐binding receptor complex regulating Arabidopsis stem cell specification. Plant J 2010, 63: 899 – 900.en_US
dc.identifier.citedreferenceOgawa M, Shinohara H, Sakagami Y, Matsubayashi Y. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 2008, 319: 294.en_US
dc.identifier.citedreferenceKinoshita A, Betsuyaku S, Osakabe Y, Mizuno S, Nagawa S, Stahl Y, Simon R, Yamaguchi‐Shinozaki K, Fukuda H, Sawa S. RPK2 is an essential receptor‐like kinase that transmits the CLV3 signal in Arabidopsis. Development 2010, 137: 3911 – 3920.en_US
dc.identifier.citedreferenceZhu Y, Wang Y, Li R, Song X, Wang Q, Huang S, Jin JB, Liu CM, Lin J. Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis. Plant J 2010, 61: 223 – 233.en_US
dc.identifier.citedreferenceSong SK, Hofhuis H, Lee MM, Clark SE. Key divisions in the early Arabidopsis embryo require POL and PLL1 phosphatases to establish the root stem cell organizer and vascular axis. Dev Cell 2008, 15: 98 – 109.en_US
dc.identifier.citedreferenceGagne JM, Clark SE. The Arabidopsis stem sell factor POLTERGEIST is membrane localized and phospholipid stimulated. Plant Cell 2010, 22: 729 – 743.en_US
dc.identifier.citedreferenceYadav RK, Girke T, Pasala S, Xie M, Reddy GV. Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci USA 2009, 106: 4941 – 4946.en_US
dc.identifier.citedreferenceLeibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU. WUSCHEL controls meristem function by direct regulation of cytokinin‐inducible response regulators. Nature 2005, 438: 1172 – 1175.en_US
dc.identifier.citedreferenceBusch W, Miotk A, Ariel FD, Zhao Z, Forner J, Daum G, Suzaki T, Schuster C, Schultheiss SJ, Leibfried A, et al. Transcriptional control of a plant stem cell niche. Dev Cell 2010, 18: 849 – 861.en_US
dc.identifier.citedreferenceYadav RK, Tavakkoli M, Reddy GV. WUSCHEL mediates stem cell homeostasis by regulating stem cell number and patterns of cell division and differentiation of stem cell progenitors. Development 2010, 137: 3581 – 3589.en_US
dc.identifier.citedreferenceReddy GV, Heisler MG, Ehrhardt DW, Meyerowitz EM. Real‐time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 2004, 131: 4225 – 4237.en_US
dc.identifier.citedreferenceMuller R, Borghi L, Kwiatkowska D, Laufs P, Simon R. Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to CLV3 signaling. Plant Cell 2006, 18: 1188 – 1198.en_US
dc.identifier.citedreferenceBarton MK, Poethig RS. Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant Development 1993, 119: 823 – 831.en_US
dc.identifier.citedreferenceEndrizzi K, Moussian B, Haecker A, Levin JZ, Laux T. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 1996, 10: 967 – 979.en_US
dc.identifier.citedreferenceGallois JL, Woodward C, Reddy GV, Sablowski R. Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 2002, 129: 3207 – 3217.en_US
dc.identifier.citedreferenceLenhard M, Jurgens G, Laux T. The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development 2002, 129: 3195 – 3206.en_US
dc.identifier.citedreferenceLong JA, Moan EI, Medford JI, Barton MK. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 1996, 379: 66 – 69.en_US
dc.identifier.citedreferenceByrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 2000, 408: 967 – 971.en_US
dc.identifier.citedreferenceByrne ME, Simorowski J, Martienssen RA. ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development 2002, 129: 1957 – 1965.en_US
dc.identifier.citedreferenceIwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S, Tsukaya H, Hasebe M, Soma T, Ikezaki M, Machida C, et al. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol 2002, 43: 467 – 478.en_US
dc.identifier.citedreferenceOri N, Eshed Y, Chuck G, Bowman JL, Hake S. Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 2000, 127: 5523 – 5532.en_US
dc.identifier.citedreferenceSemiarti E, Ueno Y, Tsukaya H, Iwakawa, H, Machida C, Machida Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem‐related homeobox genes in leaves. Development 2001, 128: 1771 – 1783.en_US
dc.identifier.citedreferenceXu L, Xu Y, Dong A, Sun Y, Pi L, Xu Y, Huang H. Novel as1 and as2 defects in leaf adaxial‐abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development 2003, 130: 4097 – 4107.en_US
dc.identifier.citedreferenceScofield S, Murray JA. KNOX gene function in plant stem cell niches. Plant Mol Biol 2006, 60: 929 – 946.en_US
dc.identifier.citedreferencePhelps‐Durr TL, Thomas J, Vahab P, Timmermans MC. Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis. Plant Cell 2005, 17: 2886 – 2898.en_US
dc.identifier.citedreferenceRichards DE, King KE, Ait‐Ali T, Harberd NP. How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol 2001, 52: 67 – 88.en_US
dc.identifier.citedreferenceVeit B. Hormone mediated regulation of the shoot apical meristem. Plant Mol Biol 2009, 69: 397 – 408.en_US
dc.identifier.citedreferenceSakamoto T, Kamiya N, Ueguchi‐Tanaka M, Iwahori S, Matsuoka M. KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 2001, 15: 581 – 590.en_US
dc.identifier.citedreferenceHay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M. The gibberellin pathway mediates KNOTTED1‐type homeobox function in plants with different body plans. Curr Biol 2002, 12: 1557 – 1565.en_US
dc.identifier.citedreferenceBartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116: 281 – 297.en_US
dc.identifier.citedreferenceKim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Narry Kim V, et al. microRNA‐directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 2005, 42: 84 – 94.en_US
dc.identifier.citedreferenceRhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets. Cell 2002, 110: 513 – 520.en_US
dc.identifier.citedreferenceTang G, Reinhart BJ, Bartel DP, Zamore PD. A biochemical framework for RNA silencing in plants. Genes Dev 2003, 17: 49 – 63.en_US
dc.identifier.citedreferenceWilliams L, Grigg SP, Xie M, Christensen S, Fletcher JC. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD‐ZIP target genes. Development 2005, 132: 3657 – 3668.en_US
dc.identifier.citedreferenceReinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev 2002, 16: 1616 – 1626.en_US
dc.identifier.citedreferenceAriel FD, Manavella PA, Dezar CA, Chan RL. The true story of the HD‐Zip family. Trends Plant Sci 2007, 12: 419 – 426.en_US
dc.identifier.citedreferencePrigge MJ, Clark, S. E. Evolution of the class III HD‐Zip gene family in land plants. Evol Dev 2006, 8: 350 – 361.en_US
dc.identifier.citedreferenceGreen KA, Prigge MJ, Katzman RB, Clark SE. CORONA, a member of the class III homeodomain‐leucine zipper gene family in Arabidopsis, regulates stem cell specification and organogenesis. Plant Cell 2005, 17: 691 – 704.en_US
dc.identifier.citedreferenceMcConnell JR, Barton MK. Leaf polarity and meristem formation in Arabidopsis. Development 1998, 125: 2935 – 2942.en_US
dc.identifier.citedreferenceMcConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK., Role of PHABULOSA and PHAVOLUTA in determinging radial patterning in shoot. Nature 2001, 411: 709 – 713.en_US
dc.identifier.citedreferenceOtsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE. REVOLUTA regulates meristem initiation at lateral positions. Plant J 2001, 25: 223 – 236.en_US
dc.identifier.citedreferencePrigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE, Class III homeodomain‐leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 2005, 17: 61 – 76.en_US
dc.identifier.citedreferenceShen WH, Xu L. Chromatin remodeling in stem cell maintenance in Arabidopsis thaliana. Mol Plant 2009, 2: 600 – 609.en_US
dc.identifier.citedreferenceWaites R, Selvadurai HR, Oliver IR, Hudson A. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 1998, 93: 779 – 789.en_US
dc.identifier.citedreferenceHutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 2008, 9: 22 – 32.en_US
dc.identifier.citedreferenceVaucheret H. Plant ARGONAUTES. Trends Plant Sci 2008, 13: 350 – 358.en_US
dc.identifier.citedreferenceTolia NH, Joshua‐Tor L. Slicer and the argonautes. Nat Chem Biol 2007, 3: 36 – 43.en_US
dc.identifier.citedreferenceBohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C. AGO1 defines a novel locus of Arabidopsis controlling leaf development. Embo J 1998, 17: 170 – 180.en_US
dc.identifier.citedreferenceKidner CA, Martienssen RA. The role of ARGONAUTE1 (AGO1) in meristem formation and identity. Dev Biol 2005, 280: 504 – 517.en_US
dc.identifier.citedreferenceLiu Q, Yao X, Pi L, Wang H, Cui X, Huang H. The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. Plant J 2009, 58: 27 – 40.en_US
dc.identifier.citedreferenceLynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, Barton MK. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 1999, 126: 469 – 481.en_US
dc.identifier.citedreferenceMoussian B, Schoof H, Haecker A, Jurgens G, Laux T. Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. Embo J 1998, 17: 1799 – 1809.en_US
dc.identifier.citedreferenceJi L, Liu X, Yan J, Wang W, Yumul RE, Kim YJ, Dinh TT, Liu J, Cui X, Zheng B, et al. ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLoS Genet 2011, 7: e1001358.en_US
dc.identifier.citedreferenceZhu H, Hu F, Wang R, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang X. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 2011, 145: 242 – 256.en_US
dc.identifier.citedreferencePerilli S, Moubayidin L, Sabatini S. The molecular basis of cytokinin function. Curr Opin Plant Biol 2010, 13: 21 – 26.en_US
dc.identifier.citedreferenceJasinski S, Piazza P, Craft J, Hay A, Woolley, L, Rieu I, Phillips A, Hedden P, Tsiantis M. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 2005, 15: 1560 – 1565.en_US
dc.identifier.citedreferenceSakakibara H. Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 2006, 57: 431 – 449.en_US
dc.identifier.citedreferenceYanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol 2005, 15: 1566 – 1571.en_US
dc.identifier.citedreferenceKurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. Direct control of shoot meristem activity by a cytokinin‐activating enzyme. Nature 2007, 445: 652 – 655.en_US
dc.identifier.citedreferenceKuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H. Functional analyses of LONELY GUY cytokinin‐activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 2009, 21: 3152 – 3169.en_US
dc.identifier.citedreferenceChickarmane VS, Gordon SP, Tarr PT, Heisler MG, Meyerowitz EM. Cytokinin signaling as a positional cue for patterning the apical‐basal axis of the growing Arabidopsis shoot meristem. Proc Natl Acad Sci USA 2012, 109: 4002 – 4007.en_US
dc.identifier.citedreferenceTokunaga H, Kojima M, Kuroha T, Ishida T, Sugimoto K, Kiba T, Sakakibara H. Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG‐dependent pathway in cytokinin activation. Plant J 2012, 69: 355 – 365.en_US
dc.identifier.citedreferenceTucker MR, Laux T. Connecting the paths in plant stem cell regulation. Trends Cell Biol 2007, 17: 403 – 410.en_US
dc.identifier.citedreferenceZhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU. Hormonal control of the shoot stem‐cell niche. Nature 2010, 465: 1089 – 1092.en_US
dc.identifier.citedreferenceGordon SP, Chickarmane VS, Ohno C, Meyerowitz EM. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci USA 2009, 106: 16529 – 16534.en_US
dc.identifier.citedreferenceLindsay DL, Sawhney VK, Bonham‐Smith PC. Cytokinin‐induced changes in CLAVATA1 and WUSCHEL expression temporally coincide with altered floral development in Arabidopsis. Plant Science 2006, 170: 1111 – 1117.en_US
dc.identifier.citedreferenceWerner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T. Cytokinin‐deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 2003, 15: 2532 – 2550.en_US
dc.identifier.citedreferenceBartrina I, Otto E, Strnad M, Werner T, Schmulling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 2011, 23: 69 – 80.en_US
dc.identifier.citedreferenceSkylar A, Hong F, Chory J, Weigel D, Wu X. STIMPY mediates cytokinin signaling during shoot meristem establishment in Arabidopsis seedlings. Development 2010, 137: 541 – 549.en_US
dc.identifier.citedreferenceWu X, Dabi T, Weigel D. Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Curr Biol 2005, 15: 436 – 440.en_US
dc.identifier.citedreferenceKaya H, Shibahara KI, Taoka KI, Iwabuchi M, Stillman B, Araki T. FASCIATA genes for chromatin assembly factor‐1 in arabidopsis maintain the cellular organization of apical meristems. Cell 2001, 104: 131 – 142.en_US
dc.identifier.citedreferenceTakeda S, Tadele Z, Hofmann I, Probst AV, Angelis KJ, Kaya H, Araki T, Mengiste T, Mittelsten Scheid O, Shibahara K, et al. BRU1, a novel link between responses to DNA damage and epigenetic gene silencing in Arabidopsis. Genes Dev 2004, 18: 782 – 793.en_US
dc.identifier.citedreferenceGuyomarc'h S, Vernoux T, Traas J, Zhou DX, Delarue M. MGOUN3, an Arabidopsis gene with tetratricopeptide‐repeat‐related motifs, regulates meristem cellular organization. J Exp Bot 2004, 55: 673 – 684.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.