Show simple item record

Decoupled Control of Carbon Nanotube Forest Density and Diameter by Continuous‐Feed Convective Assembly of Catalyst Particles

dc.contributor.authorPolsen, Erik S.en_US
dc.contributor.authorBedewy, Mostafaen_US
dc.contributor.authorHart, A. Johnen_US
dc.date.accessioned2013-09-04T17:18:25Z
dc.date.available2014-10-06T19:17:41Zen_US
dc.date.issued2013-08-12en_US
dc.identifier.citationPolsen, Erik S.; Bedewy, Mostafa; Hart, A. John (2013). "Decoupled Control of Carbon Nanotube Forest Density and Diameter by Continuous‐Feed Convective Assembly of Catalyst Particles." Small 9(15): 2564-2575. <http://hdl.handle.net/2027.42/99619>en_US
dc.identifier.issn1613-6810en_US
dc.identifier.issn1613-6829en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99619
dc.description.abstractThe widespread potential application of vertically aligned carbon nanotube (CNT) forests have stimulated recent work on large‐area chemical vapor deposition growth methods, but improved control of the catalyst particles is needed to overcome limitations to the monodispersity and packing density of the CNTs. In particular, traditional thin‐film deposition methods are not ideal due to their vacuum requirements, and due to limitations in particle uniformity and density imposed by the thin‐film dewetting process. Here, a continuous‐feed convective self‐assembly process for manufacturing uniform mono‐ and multi‐layers of catalyst particles for CNT growth is presented. Particles are deposited from a solution of commercially available iron oxide nanoparticles, by pinning the meniscus between a blade edge and the substrate. The substrate is translated at constant velocity under the blade so the meniscus and contact angle remain fixed as the particles are deposited on the substrate. Based on design of the particle solution and tuning of the assembly parameters, a priori control of CNT diameter and packing density is demonstrated. Quantitative relationships are established between the catalyst size and density, and the CNT morphology and density. The roll‐to‐roll compatibility of this method, along with initial results achieved on copper foils, suggest promise for scale‐up of CNT forest manufacturing at commercially relevant throughput. Continuous‐feed evaporative self‐assembly is used to create nanoparticle arrays for carbon nanotube (CNT) film growth. This versatile method enables specification of the CNT film morphology, and wide‐range tuning of the diameter and density of CNT forests. The present results exceed the performance limits of thin‐film catalyst dewetting, and the process is compatible with roll‐to‐roll manufacturing on flexible substrates.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherCatalysisen_US
dc.subject.otherFilm Formationen_US
dc.subject.otherCarbon Nanotubesen_US
dc.subject.otherNanoparticlesen_US
dc.subject.otherSelf‐Assemblyen_US
dc.titleDecoupled Control of Carbon Nanotube Forest Density and Diameter by Continuous‐Feed Convective Assembly of Catalyst Particlesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMechanosynthesis Group, Department of Mechanical Engineering, University of Michigan, 2350 Hayward St. Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumMechanosynthesis Group, Department of Mechanical Engineering, University of Michigan, 2350 Hayward St. Ann Arbor, MI 48109, USA.en_US
dc.identifier.pmid23418098en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99619/1/2564_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99619/2/smll_201202878_sm_suppl.pdf
dc.identifier.doi10.1002/smll.201202878en_US
dc.identifier.sourceSmallen_US
dc.identifier.citedreferenceT. Cabioc'h, E. Thune, J. P. Riviére, S. Camelio, J. C. Girard, P. Guérin, M. Jaouen, L. Henrard, P. Lambin, J. Appl. Phys. 2002, 91, 1560 – 1567.en_US
dc.identifier.citedreferenceB. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L. G. Bachas, Science 2004, 303, 62 – 65.en_US
dc.identifier.citedreferenceA. Kalra, S. Garde, G. Hummer, Proc. Natl. Acad. Sci. USA 2003, 100, 10175 – 10180.en_US
dc.identifier.citedreferenceL. Sun, R. M. Crooks, J. Am: Chem. Soc. 2000, 122, 12340 – 12345.en_US
dc.identifier.citedreferenceE. J. Garcia, B. L. Wardle, John Hart, Composites Part A 2008, 39, 1065 – 1070.en_US
dc.identifier.citedreferenceT. Tong, Y. Zhao, L. Delzeit, A. Kashani, M. Meyyappan, A. Majumdar, IEEE Trans. Components Packaging Technol. 2007, 30, 92 – 100.en_US
dc.identifier.citedreferenceF. Javier del Campo, J. García‐Céspedes, F. Xavier Muñoz, E. Bertrán, Electrochem. Commun. 2008, 10, 1242 – 1245.en_US
dc.identifier.citedreferenceE. Garcia, B. Wardle, A. J. Hart, N. Yamamoto, Composites Sci. Technol. 2008, 68, 2034 – 2041.en_US
dc.identifier.citedreferenceS. Fan, W. Liang, H. Dang, N. Franklin, T. Tombler, M. Chapline, H. Dai, Phys. E 2000, 8, 179 – 183.en_US
dc.identifier.citedreferenceS. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, H. Dai, Science 1999, 283, 512 – 514.en_US
dc.identifier.citedreferenceS. Hofmann, R. Sharma, C. Ducati, G. Du, C. Mattevi, C. Cepek, M. Cantoro, S. Pisana, A. Parvez, F. Cervantes‐Sodi, A. C. Ferrari, R. Dunin‐Borkowski, S. Lizzit, L. Petaccia, A. Goldoni, J. Robertson, Nano Lett. 2007, 7, 602 – 608.en_US
dc.identifier.citedreferenceS. Esconjauregui, M. Fouquet, B. C. Bayer, C. Ducati, R. Smajda, S. Hofmann, J. Robertson, ACS Nano 2010, 4, 7431 – 7436.en_US
dc.identifier.citedreferenceE. R. Meshot, D. L. Plata, S. Tawfick, Y. Zhang, E. A. Verploegen, A. J. Hart, ACS Nano 2009, 3, 2477 – 2486.en_US
dc.identifier.citedreferenceY. Zhang, Y. Li, W. Kim, D. Wang, H. Dai, Appl. Phys. A: Mater. Sci. Processing 2002, 74, 325 – 328.en_US
dc.identifier.citedreferenceE. R. Meshot, E. Verploegen, M. Bedewy, S. Tawfick, A. R. Woll, K. S. Green, M. Hromalik, L. J. Koerner, H. T. Philipp, M. W. Tate, S. M. Gruner, A. J. Hart, ACS Nano 2012, 6, 5091 – 5101.en_US
dc.identifier.citedreferenceR. D. Bennett, A. J. Hart, R. E. Cohen, Adv. Mater. 2006, 18, 2274 – 2279.en_US
dc.identifier.citedreferenceG. D. Nessim, A. J. Hart, J. S. Kim, D. Acquaviva, J. Oh, C. D. Morgan, M. Seita, J. S. Leib, C. V Thompson, Nano Lett. 2008, 8, 3587 – 3593.en_US
dc.identifier.citedreferenceK. Yoshihara, S. Honda, J.‐G. Lee, H. Mori, K. Oura, M. Katayama, Japanese J. Appl. Phys. 2008, 47, 1941 – 1943.en_US
dc.identifier.citedreferenceM. Bedewy, E.R. Meshot, A. J. Hart, Carbon 2012, 50, 5106 – 5116.en_US
dc.identifier.citedreferenceM. Bedewy, E. R. Meshot, M. J. Reinker, A. J. Hart, ACS Nano 2011, 5, 8974 – 8989.en_US
dc.identifier.citedreferenceY. T. Chou, Y. T. Ko, M. F. Yan, J. Am. Ceram. Soc. 1987, 70, 280 – 282.en_US
dc.identifier.citedreferenceH. J. Kim, M. J. M. Krane, K. P. Trumble, K. J. Bowman, J. Am. Ceram. Soc. 2006, 89, 2769 – 2775.en_US
dc.identifier.citedreferenceB. G. Prevo, O. D. Velev, Langmuir 2004, 20, 2099 – 2107.en_US
dc.identifier.citedreferenceL. Malaquin, T. Kraus, H. Schmid, E. Delamarche, H. Wolf, Langmuir 2007, 23, 11513 – 11521.en_US
dc.identifier.citedreferenceP. Kumnorkaew, Y. Ee, N. Tansu, J. F. Gilchrist, Langmuir 2008, 24, 12150 – 12157.en_US
dc.identifier.citedreferenceM. I. Bodnarchuk, M. V Kovalenko, S. Pichler, G. Fritz‐Popovski, G. Hesser, W. Heiss, ACS Nano 2010, 4, 423 – 431.en_US
dc.identifier.citedreferenceH. Yang, P. Jiang, Langmuir 2010, 26, 13173 – 13182.en_US
dc.identifier.citedreferenceY. Tian, B. Yu, X. Li, K. Li, J. Mater. Chem. 2011, 21, 2476 – 2481.en_US
dc.identifier.citedreferenceY. Zhu, F. Y. Jiang, K. Chen, F. Kang, Z. K. Tang, J. Alloys Compounds 2011, 509, 8549 – 8553.en_US
dc.identifier.citedreferenceC. Y. Wang, J. M. Hong, G. Chen, Y. Zhang, N. Gu, Chinese Chem. Lett. 2010, 21, 179 – 182.en_US
dc.identifier.citedreferenceS. Guo, D. Li, L. Zhang, J. Li, E. Wang, Biomaterials 2009, 30, 1881 – 1889.en_US
dc.identifier.citedreferenceJ. Salado, M. Insausti, I. Gil de Muro, L. Lezama, T. Rojo, J. Non‐Crystalline Solids 2008, 354, 5207 – 5209.en_US
dc.identifier.citedreferenceW. W. Yu, J. C. Falkner, C. T. Yavuz, V. L. Colvin, Chem. Commun. 2004, 40, 2306 – 2307.en_US
dc.identifier.citedreferenceS. G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N.‐M. Hwang, J.‐G. Park, T. Hyeon, J. Am. Chem. Soc. 2007, 129, 12571 – 12584.en_US
dc.identifier.citedreferenceN. T. Alvarez, F. Li, C. L. Pint, J. T. Mayo, E. Z. Fisher, J. M. Tour, V. L. Colvin, R. H. Hauge, Chem. Mater. 2011, 23, 3466 – 3475.en_US
dc.identifier.citedreferenceC.‐H. Chang, H. J. In, S. Takahashi, M. Deterre, H. J. Choi, K. W. Gotrik, G. Barbastathis, Nanotechnology 2011, 22, 035301.en_US
dc.identifier.citedreferenceG. S. Choi, Y. S. Cho, K. H. Son, D. J. Kim, Microelectron. Engin. 2003, 66, 77 – 82.en_US
dc.identifier.citedreferenceB. G. Prevo, D. M. Kuncicky, O. D. Velev, Colloids Surf. A 2007, 311, 2 – 10.en_US
dc.identifier.citedreferenceB. G. Prevo, J. C. Fuller, O. D. Velev, Chem. Mater. 2005, 17, 28 – 35.en_US
dc.identifier.citedreferenceT. P. Bigioni, X.‐M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, H. M. Jaeger, Nat. Mater. 2006, 5, 265 – 270.en_US
dc.identifier.citedreferenceA. S. Dimitrov, K. Nagayama, Langmuir 1996, 12, 1303 – 1311.en_US
dc.identifier.citedreferenceA. J. Hart, A. H. Slocum, J. Phys. Chem. B 2006, 110, 8250 – 8257.en_US
dc.identifier.citedreferenceM. Bedewy, E. R. Meshot, H. Guo, E. A. Verploegen, W. Lu, A. J. Hart, J. Phys. Chem. C 2009, 113, 20576 – 20582.en_US
dc.identifier.citedreferenceC. He, N. Zhao, C. Shi, X. Du, J. Li, L. Cui, J. Alloys Compounds 2006, 425, 329 – 333.en_US
dc.identifier.citedreferenceZ. Abdullaeva, E. Omurzak, C. Iwamoto, H. S. Ganapathy, S. Sulaimankulova, C. Liliang, T. Mashimo, Carbon 2012, 50, 1776 – 1785.en_US
dc.identifier.citedreferenceB. N. Wang, R. D. Bennett, E. Verploegen, A. J. Hart, R. E. Cohen, J. Phys. Chem. C 2007, 111, 5859 – 5865.en_US
dc.identifier.citedreferenceN. Latorre, E. Romeo, F. Cazana, T. Ubieto, C. Royo, I. Villacampa, A. Monzon, J. Phys. Chem. C 2010, 114, 4773 – 4782.en_US
dc.identifier.citedreferenceP. B. Amama, C. L. Pint, F. Mirri, M. Pasquali, R. H. Hauge, B. Maruyama, Carbon 2012, 50, 2396 – 2406.en_US
dc.identifier.citedreferenceT. D. L. Arcos, F. Vonau, M. G. Garnier, V. Thommen, H.‐G. Boyen, P. Oelhafen, Appl. Phys. Lett. 2002, 80, 2383 – 2385.en_US
dc.identifier.citedreferenceL. Gao, A. Peng, Z. Y. Wang, H. Zhang, Z. Shi, Z. Gu, G. Cao, B. Ding, Solid State Commun. 2008, 146, 380 – 383.en_US
dc.identifier.citedreferenceD. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat. Mater. 2006, 5, 987 – 994.en_US
dc.identifier.citedreferenceH. Wang, J. Feng, X. Hu, K. M. Ng, J. Phys. Chem. C 2007, 111, 12617 – 12624.en_US
dc.identifier.citedreferenceW. Lin, R. Zhang, K.‐S. Moon, C. Wong, IEEE Trans. Adv. Packaging 2010, 33, 370 – 376.en_US
dc.identifier.citedreferenceC. L. Pint, Y.‐Q. Xu, M. Pasquali, R. H. Hauge, ACS Nano 2008, 2, 1871 – 1878.en_US
dc.identifier.citedreferenceM. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, Q. Li, Macromol. Chem. Phys. 2009, 210, 230 – 241.en_US
dc.identifier.citedreferenceA. Dong, X. Ye, J. Chen, C. B. Murray, Nano Lett. 2011, 11, 1804 – 1809.en_US
dc.identifier.citedreferenceT. Wen, S. Majetich, ACS Nano 2011, 5, 8868 – 8876.en_US
dc.identifier.citedreferenceD. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, S. Iijima, Phys. Rev. Lett. 2005, 95, 056104.en_US
dc.identifier.citedreferenceF. L. Deepak, A. Govindaraj, C. N. R. Rao, J. Chem. Sci. 2006, 118, 9 – 14.en_US
dc.identifier.citedreferenceK. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 2004, 306, 1362 – 1364.en_US
dc.identifier.citedreferenceA. Cao, X. Zhang, C. Xu, J. Liang, D. Wu, B. Wei, J. Mater. Res. 2011, 16, 3107 – 3110.en_US
dc.identifier.citedreferenceJ. Robertson, G. Zhong, C. S. Esconjauregui, B. C. Bayer, C. Zhang, M. Fouquet, S. Hofmann, Japanese J. Appl. Phys. 2012, 51, 01AH01.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.