Show simple item record

Comparison of high‐altitude production and ionospheric outflow contributions to O + loss at Mars

dc.contributor.authorLiemohn, Michael W.en_US
dc.contributor.authorCurry, Shannon M.en_US
dc.contributor.authorFang, Xiaohuaen_US
dc.contributor.authorMa, Yingjuanen_US
dc.date.accessioned2013-09-04T17:18:30Z
dc.date.available2014-09-02T14:12:52Zen_US
dc.date.issued2013-07en_US
dc.identifier.citationLiemohn, Michael W.; Curry, Shannon M.; Fang, Xiaohua; Ma, Yingjuan (2013). "Comparison of high‐altitude production and ionospheric outflow contributions to O + loss at Mars." Journal of Geophysical Research: Space Physics 118(7): 4093-4107. <http://hdl.handle.net/2027.42/99634>en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99634
dc.description.abstractThe Mars Test Particle model is used (with background parameters from a magnetohydrodynamic code) to simulate the transport of O + ions in the near‐Mars space environment to study the source processes responsible for ion escape. The MHD values at this altitude are used to inject an ionospheric outflow source of ions for the Mars Test Particle (MTP). The resulting loss distributions (in both real and velocity space) from this ionospheric source term are compared against those from high‐altitude ionization mechanisms, in particular photoionization, charge exchange, and electron impact ionization, each of which has its own source regions, albeit overlapping. For the nominal MHD settings, this ionospheric outflow source contributes only 10% to the total O + loss rate at solar maximum, predominantly via the central tail region. This percentage has very little dependence on the initial temperature, but a change in the initial ion density or bulk velocity directly alters this loss through the central tail. A density or bulk velocity increase of a factor of 10 makes the ionospheric outflow loss comparable in magnitude to the loss from the combined high‐altitude sources. The spatial and velocity space distributions of escaping O + are examined and compared for the various source terms to identify features specific to each ion source mechanism. For solar minimum conditions, the nominal MHD ionospheric outflow settings yield a 27% contribution to the total O + loss rate, i.e., roughly equal to any one of the three high‐altitude source terms with respect to escape. Key Points Ionospheric outflow and high‐altitude ionization portioning to Mars ion loss Nominal results at solar min and max show IO is smaller than high‐alt portion 10x increases in IO initialization density or velocity makes it comparableen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherPick‐Up Ionsen_US
dc.subject.otherVelocity Space Distributionsen_US
dc.subject.otherIonospheric Outflowen_US
dc.subject.otherMars Ion Escapeen_US
dc.titleComparison of high‐altitude production and ionospheric outflow contributions to O + loss at Marsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99634/1/jgra50388.pdf
dc.identifier.doi10.1002/jgra.50388en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceLiemohn, M. W., Y. Ma, A. F. Nagy, J. U. Kozyra, J. D. Winningham, R. A. Frahm, J. S. Sharber, S. Barabash, and R. Lundin ( 2007 ), Numerical modeling of the magnetic topology near Mars auroral observations, Geophys. Res. Lett., 34, L24202, doi: 10.1029/2007GL031806.en_US
dc.identifier.citedreferenceKirsch, E., et al. ( 1991 ), Pickup ions (E O +  > 55 keV) measured near Mars by Phobos‐2 in February/March 1989, Ann. Geophys., 9, 761 – 767.en_US
dc.identifier.citedreferenceLi, L., and Y. Zhang ( 2009 ), Model investigation of the influence of the crustal magnetic field on the oxygen ion distribution in the near Martian tail, J. Geophys. Res., 114, A06215, doi: 10.1029/2008JA013850.en_US
dc.identifier.citedreferenceLiemohn, M. W., Y. Ma, R. A. Frahm, X. Fang, J. U. Kozyra, A. F. Nagy, J. D. Winningham, J. R. Sharber, S. Barabash, and R. Lundin ( 2006 ), Mars global MHD predictions of magnetic connectivity between the dayside ionosphere and the magnetospheric flanks, Space Sci. Rev., 126, 63 – 76.en_US
dc.identifier.citedreferenceLuhmann, J. G. ( 1990 ), A model of the ion wake of Mars, Geophys. Res. Lett., 17, 869 – 872.en_US
dc.identifier.citedreferenceLuhmann, J. G., and J. U. Kozyra ( 1991 ), Dayside pick‐up oxygen ion precipitation at Venus and Mars: Spatial distributions, energy deposition, and consequences, J. Geophys. Res., 96, 5457 – 5467.en_US
dc.identifier.citedreferenceLundin, R., et al. ( 1989 ), First measurements of the ionospheric plasma escape from Mars, Nature, 341 ( 6243 ), 609 – 612.en_US
dc.identifier.citedreferenceLundin, R., A. Zakharov, R. Pellinen, S. W. Barabasj, H. Borg, E. M. Dubinin, B. Hultqvist, H. Koskinen, I. Liede, and N. Pissarenko ( 1990 ), ASPERA/Phobos measurements of the ion outflow from the Martian ionosphere, Geophys. Res. Lett., 17, 873 – 876.en_US
dc.identifier.citedreferenceLundin, R., et al. ( 2004 ), Solar wind‐induced atmospheric erosion at Mars: First results from ASPERA‐3 on Mars Express, Science, 305, 1933 – 1936.en_US
dc.identifier.citedreferenceLundin, R., et al. ( 2006a ), Plasma acceleration above Martian magnetic anomalies, Science, 311, 980 – 983.en_US
dc.identifier.citedreferenceLundin, R., et al. ( 2006b ), Ionospheric plasma acceleration at Mars: ASPERA‐3 results, Icarus, 182, 308 – 319.en_US
dc.identifier.citedreferenceLundin, R., S. Barabash, A. Fedorov, M. Holmstrom, H. Nilsson, J.‐A. Sauvaud, and M. Yamauchi ( 2008 ), Solar forcing and planetary ion escape from Mars, Geophys. Res. Lett., 35, L09203, doi: 10.1029/2007GL032884.en_US
dc.identifier.citedreferenceLundin, R., S. Barabash, M. Holmstrom, H. Nilsson, M. Yamauchi, E. M. Dubinin, and M. Fraenz ( 2009 ), Atmospheric origin of cold ion escape from mars, Geophys. Res. Lett., 36, L17202, doi: 10.1029/2009GL039341.en_US
dc.identifier.citedreferenceMa, Y., A. F. Nagy, I. V. Sokolov, and K. C. Hansen ( 2004 ), Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109, A07211, doi: 10.1029/2003JA010367.en_US
dc.identifier.citedreferenceMcKenna‐Lawler, S., E. Kallio, R. Jarvinen, and V. Afonin ( 2012 ), Magnetic shadowing of high energy ions at Mars and how this effect can be simulated using a hybrid model, Earth Planets Space, 64 ( 2 ), 247 – 256.en_US
dc.identifier.citedreferenceMcKenna‐Lawlor, S. M. P., V. Afonin, Y. Yeroshenko, E. Keppler, E. Kirsch, and K. Schwingenschuh ( 1993 ), First identification in energetic particles of characteristic plasma boundaries at Mars and an account of various energetic particle populations close to the planet, Planet. Space Sci., 41, 373 – 380.en_US
dc.identifier.citedreferenceModolo, R., G. M. Chanteur, E. Dubinin, and A. P. Matthews ( 2005 ), Influence of the solar EUV flux on the Martian plasma environment, Ann. Geophys., 23, 433 – 444.en_US
dc.identifier.citedreferenceMoore, T. E., and D. C. Delcourt ( 1995 ), The geopause, Rev. Geophys., 33, 175 – 209.en_US
dc.identifier.citedreferencePenz, T., N. V. Erkaev, H. K. Biernat, and H. Lammer ( 2004 ), Ion loss on Mars caused by the Kelvin‐Helmholtz instability, Planet. Space Sci., 52, 1157 – 1167, doi: 10.1016/j.pss.2004.06.001.en_US
dc.identifier.citedreferencePerez‐de‐Tejada, H., R. Lundin, H. Durand‐Manterola, and M. Reyes‐Ruiz ( 2009 ), Solar wind erosion of the polar regions of the Mars ionosphere, J. Geophys. Res., 114, A02106, doi: 10.1029/2008JA013295.en_US
dc.identifier.citedreferenceSauer, K., A. Bogdanov, and K. Baumgärtel ( 1994 ), Evidence of an ion composition boundary (protonopause) in bi‐ion fluid simulations of solar wind mass loading, Geophys. Res. Lett., 21, 2255 – 2258.en_US
dc.identifier.citedreferenceVerigin, M. I., et al. ( 1991 ), Ions of planetary origin in the Martian magnetosphere (Phobos‐2/Taus experiment), Planet. Space Sci., 39, 131 – 137.en_US
dc.identifier.citedreferenceCurry, S. M., M. W. Liemohn, X. Fang, Y. Ma, A. F. Nagy, and J. Espley ( 2013a ), The influence of production mechanisms on pickup ion loss at Mars, J. Geophys. Res. Space Physics, 118, 554 – 569, doi: 10.1029/2012JA017665.en_US
dc.identifier.citedreferenceCurry, S. M., M. Liemohn, X. Fang, D. Brain, and Y. Ma ( 2013b ), Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars, J. Geophys. Res. Space Physics, 118, doi: 10.1002/jgra.50358, in press.en_US
dc.identifier.citedreferenceAfonin, V., et al. ( 1989 ), Energetic ions in the close environment of Mars and particle shadowing by the planet, Nature, 341, 616 – 618.en_US
dc.identifier.citedreferenceAndersson, L., R. E. Ergun, and A. I. F. Stewart ( 2010 ), The combined atmospheric photochemistry and ion tracing code: Reproducing the Viking lander results and initial outflow results, Icarus, 206 ( 1 ), 120 – 129.en_US
dc.identifier.citedreferenceArkani‐Hamed, J. ( 2001 ), A 50‐degree spherical harmonic model of the magnetic field of Mars, J. Geophys. Res., 106, 23,197 – 23,208.en_US
dc.identifier.citedreferenceArkani‐Hamed, J. ( 2002 ), An improved 50‐degree spherical harmonic model of the magnetic field of Mars derived from both high‐latitude and low‐latitude data, J. Geophys. Res., 107 ( E10 ), 5083, doi: 10.1029/2001JE001835.en_US
dc.identifier.citedreferenceBarabash, S., A. Fedorov, R. Lundin, and J. Sauvaud ( 2007 ), Martian atmospheric erosion rates, Science, 315, 501 – 503.en_US
dc.identifier.citedreferenceBoesswetter, A., T. Bagdonat, U. Motschmann, and K. Sauer ( 2004 ), Plasma boundaries at Mars: A 3‐D simulation study, Ann. Geophys., 22, 4363 – 4379, doi: 10.0576/ag/2004-22-4363.en_US
dc.identifier.citedreferenceBoesswetter, A., et al. ( 2007 ), Comparison of data from ASPERA‐3/Mars‐Express with a 3‐D hybrid simulation, Ann. Geophys., 25, 1851 – 1864.en_US
dc.identifier.citedreferenceBougher, S. W., S. Engel, R. G. Roble, and B. Foster ( 2000 ), Comparative terrestrial planet thermosphere: 3. Solar cycle variation of global structure and winds at solstices, J. Geophys. Res., 105, 17,669 – 17,692.en_US
dc.identifier.citedreferenceBrain, D. A., J. S. Halekas, L. M. Peticolas, R. P. Lin, J. G. Luhmann, D. L. Mitchell, G. T. Delory, M. H. Acuna, and H. Reme ( 2006 ), On the origin of aurorae at Mars, Geophys. Res. Lett., 33, L01201, doi: 10.1029/2005GL024782.en_US
dc.identifier.citedreferenceBrain, D., et al. ( 2010a ), A comparison of global models for the solar wind interaction with Mars, Icarus, 206 ( 1 ), 139 – 151.en_US
dc.identifier.citedreferenceBrain, D. A., A. H. Baker, J. Briggs, J. P. Eastwood, J. S. Halekas, and T.‐D. Phan ( 2010b ), Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape, Geophys. Res. Lett., 37, L14108, doi: 10.1029/2010GL043916.en_US
dc.identifier.citedreferenceBrecht, S. H. ( 1997 ), Hybrid simulations of the magnetic topology of Mars, J. Geophys. Res., 102, 4743 – 4750.en_US
dc.identifier.citedreferenceBrecht, S. H., and S. A. Ledvina ( 2006 ), The solar wind interaction with the Martian ionosphere/atmosphere, Space Sci. Rev., 126 ( 1–4 ), 15 – 38.en_US
dc.identifier.citedreferenceBrecht, S. H., and S. A. Ledvina ( 2010 ), The loss of water from Mars: Numerical results and challenges, Icarus, 205, 164 – 173.en_US
dc.identifier.citedreferenceBrecht, S. H., and S. A. Ledvina ( 2012 ), Control of ion loss from Mars during solar minimum, Earth Planets Space, 64, 165 – 178.en_US
dc.identifier.citedreferenceBreus, T. K., et al. ( 1991 ), The solar wind interaction with Mars: Consideration of Phobos‐2 mission observations of an ion composition boundary on the dayside, J. Geophys. Res., 96, 11,165 – 11,174.en_US
dc.identifier.citedreferenceCarlsson, E., et al. ( 2006 ), Ion composition of the escaping plasma at Mars, Icarus, 182, 320 – 328.en_US
dc.identifier.citedreferenceCravens, T. E., J. U. Kozyra, A. Nagy, T. Gombosi, and M. Kurtz ( 1987 ), Electron impact ionization in the vicinity of comets, J. Geophys. Res., 92, 7341 – 7353.en_US
dc.identifier.citedreferenceCravens, T. E., A. Hoppe, S. A. Ledvina, and S. McKenna‐Lawlor ( 2002 ), Pickup ions near Mars associated with escaping oxygen atoms, J. Geophys. Res., 107 ( A8 ), 1170, doi: 10.1029/2001JA000125.en_US
dc.identifier.citedreferenceDubinin, E., M. Fraenz, J. Woch, S. Barabash, and R. Lundin ( 2009 ), Long‐lived auroral structures and atmospheric losses through auroral flux tubes on Mars, Geophys. Res. Lett., 36, L08108, doi: 10.1029/2009GL038209.en_US
dc.identifier.citedreferenceEastwood, J. P., D. A. Brain, J. S. Halekas, J. F. Drake, T. D. Phan, M. Øieroset, D. L. Mitchell, R. P. Lin, and M. Acuna ( 2008 ), Evidence for collisionless magnetic reconnection at Mars, Geophys. Res. Lett., 35, L02106, doi: 10.1029/2007GL032289.en_US
dc.identifier.citedreferenceErgun, R. E., L. Andersson, W. K. Peterson, D. Brain, G. T. Delory, D. L. Mitchell, R. P. Lin, and A. W. Yau ( 2006 ), Role of plasma waves in Mars' atmospheric loss, Geophys. Res. Lett., 33, L14103, doi: 10.1029/2006GL025785.en_US
dc.identifier.citedreferenceEspley, J. R., P. A. Cloutier, D. A. Brain, D. H. Crider, and M. H. Acuña ( 2004 ), Observations of low‐frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region, and tail, J. Geophys. Res., 109, A07213, doi: 10.1029/2003JA010193.en_US
dc.identifier.citedreferenceFang, X., M. W. Liemohn, A. F. Nagy, Y. Ma, D. L. De Zeeuw, J. U. Kozyra, and T. Zurbuchen ( 2008 ), Pickup oxygen ion distribution around Mars, J. Geophys. Res., 113, A02210, doi: 10.1029/2007JA012736.en_US
dc.identifier.citedreferenceFang, X., M. W. Liemohn, A. F. Nagy, J. G. Luhmann, and Y. Ma ( 2010a ), On the effect of the Martian crustal magnetic field on atmospheric erosion, Icarus, 206, 130 – 138, doi: 10.1016/j.icarus.2009.01.012.en_US
dc.identifier.citedreferenceFang, X., M. W. Liemohn, A. F. Nagy, J. G. Luhmann, and Y. Ma ( 2010b ), Escape probability of Martian atmospheric ions: Controlling effects of the electromagnetic fields, J. Geophys. Res., 115, A04308, doi: 10.1029/2009ja14929.en_US
dc.identifier.citedreferenceFang, X., S. W. Bougher, R. E. Johnson, J. G. Luhmann, Y. Ma, Y.‐C. Wang, and M. W. Liemohn ( 2013 ), The importance of pickup oxygen ion precipitation to the Mars upper atmosphere under extreme solar wind conditions, Geophys. Res. Lett., doi: 10.1002/grl.50415, in press.en_US
dc.identifier.citedreferenceFedorov, A., et al. ( 2006 ), Structure of the Martian wake, Icarus, 182, 329 – 336.en_US
dc.identifier.citedreferenceFränz, M., et al. ( 2006 ), Plasma moments in the environment of Mars, Space Sci. Rev., 126, 165 – 207, doi: 10.1007/s11214-006-9115-9.en_US
dc.identifier.citedreferenceHarnett, E. M. ( 2009 ), High‐resolution multifluid simulations of flux ropes in the Martian magnetosphere, J. Geophys. Res., 114, A01208, doi: 10.1029/2008JA013648.en_US
dc.identifier.citedreferenceHarnett, E. M., and R. M. Winglee ( 2006 ), Three‐dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events, J. Geophys. Res., 111, A09213, doi: 10.1029/2006JA011724.en_US
dc.identifier.citedreferenceJohnson, R. E. ( 1994 ), Plasma‐induced sputtering of an atmosphere, Space Sci. Rev., 69, 215 – 253.en_US
dc.identifier.citedreferenceKallio, E., and P. Janhunen ( 2002 ), Ion escape from Mars in a quasi‐neutral hybrid model, J. Geophys. Res., 107 ( A3 ), 1035, doi: 10.1029/2001JA000090.en_US
dc.identifier.citedreferenceKallio, E., and H. Koskinen ( 1999 ), A test particle simulation of the motion of oxygen ions and solar wind protons near Mars, J. Geophys. Res., 104, 557 – 579.en_US
dc.identifier.citedreferenceKallio, E., H. Koskinen, S. Barabash, R. Lundin, O. Norberg, and J. G. Luhmann ( 1994 ), Proton flow in the Martian magnetosheath, J. Geophys. Res., 99, 23,547 – 23,599.en_US
dc.identifier.citedreferenceKallio, E., K. Liu, R. Jarvinen, V. Pohjola, and P. Janhunen ( 2010 ), Oxygen ion escape at Mars in a hybrid model: High energy and low energy ions, Icarus, 206 ( 1 ), 152 – 163.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.