Show simple item record

Novel Likelihood Ratio Tests for Screening Gene‐Gene and Gene‐Environment Interactions With Unbalanced Repeated‐Measures Data

dc.contributor.authorKo, Yi‐anen_US
dc.contributor.authorSaha‐chaudhuri, Paramitaen_US
dc.contributor.authorPark, Sung Kyunen_US
dc.contributor.authorVokonas, Pantel Steveen_US
dc.contributor.authorMukherjee, Bhramaren_US
dc.date.accessioned2013-09-04T17:18:32Z
dc.date.available2014-10-06T19:17:42Zen_US
dc.date.issued2013-09en_US
dc.identifier.citationKo, Yi‐an ; Saha‐chaudhuri, Paramita ; Park, Sung Kyun; Vokonas, Pantel Steve; Mukherjee, Bhramar (2013). "Novel Likelihood Ratio Tests for Screening Geneâ Gene and Geneâ Environment Interactions With Unbalanced Repeatedâ Measures Data." Genetic Epidemiology 37(6): 581-591. <http://hdl.handle.net/2027.42/99643>en_US
dc.identifier.issn0741-0395en_US
dc.identifier.issn1098-2272en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99643
dc.description.abstractThere has been extensive literature on modeling gene‐gene interaction (GGI) and gene‐environment interaction (GEI) in case‐control studies with limited literature on statistical methods for GGI and GEI in longitudinal cohort studies. We borrow ideas from the classical two‐way analysis of variance literature to address the issue of robust modeling of interactions in repeated‐measures studies. While classical interaction models proposed by Tukey and Mandel have interaction structures as a function of main effects, a newer class of models, additive main effects and multiplicative interaction (AMMI) models, do not have similar restrictive assumptions on the interaction structure. AMMI entails a singular value decomposition of the cell residual matrix after fitting the additive main effects and has been shown to perform well across various interaction structures. We consider these models for testing GGI and GEI from two perspectives: likelihood ratio test based on cell means and a regression‐based approach using individual observations. Simulation results indicate that both approaches for AMMI models lead to valid tests in terms of maintaining the type I error rate, with the regression approach having better power properties. The performance of these models was evaluated across different interaction structures and 12 common epistasis patterns. In summary, AMMI model is robust with respect to misspecified interaction structure and is a useful screening tool for interaction even in the absence of main effects. We use the proposed methods to examine the interplay between the hemochromatosis gene and cumulative lead exposure on pulse pressure in the Normative Aging Study.en_US
dc.publisherVan Nostrand Reinholden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMixed Modelen_US
dc.subject.otherLikelihood Ratio Testen_US
dc.subject.otherNonadditivityen_US
dc.subject.otherLongitudinal Dataen_US
dc.subject.otherTwo‐Step Regressionen_US
dc.subject.otherSingular Value Decompositionen_US
dc.subject.otherParametric Bootstrapen_US
dc.titleNovel Likelihood Ratio Tests for Screening Gene‐Gene and Gene‐Environment Interactions With Unbalanced Repeated‐Measures Dataen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23798480en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99643/1/gepi21744-sup-0001-si.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99643/2/gepi21744.pdf
dc.identifier.doi10.1002/gepi.21744en_US
dc.identifier.sourceGenetic Epidemiologyen_US
dc.identifier.citedreferenceBoik R. 1989. Reduced‐rank models for interaction in unequally replicated two‐way classifications. J Multivar Anal 28: 69 – 87.en_US
dc.identifier.citedreferenceBell B, Rose C, Damon A. 1966. The veterans administration longitudinal study of healthy aging. Gerontologist 6: 179 – 184.en_US
dc.identifier.citedreferenceZhang A, Park S, Wright R, Weisskopf M, Mukherjee B, Nie H, Sparrow D, Hu H. 2010. HFE H63D polymorphism as a modifier of the effect of cumulative lead exposure on pulse pressure: the Normative Aging Study. Environ Health Perspect 118: 1261 – 1266.en_US
dc.identifier.citedreferenceNocedal J, Wright S. 1999. Numerical Optimization. New York: Springer Verlag.en_US
dc.identifier.citedreferenceMukherjee B, Ko Y, VanderWeele T, Roy A, Park S, Chen J. 2012. Principal interactions analysis for repeated measures data: application to gene–gene and gene–environment interactions. Stat Med 31: 2531 – 2551.en_US
dc.identifier.citedreferencePatterson H, Thompson R. 1971. Recovery of inter‐block information when block sizes are unequal. Biometrika 58: 545 – 554.en_US
dc.identifier.citedreferenceR Core Team. 2012. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3‐900051‐07‐0.en_US
dc.identifier.citedreferenceCrossa J, Gauch H, Zobel R. 1990. Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Science 30: 493 – 500.en_US
dc.identifier.citedreferenceChatterjee N, Kalaylioglu Z, Moslehi R, Peters U, Wacholder S. 2006. Powerful multilocus tests of genetic association in the presence of gene‐gene and gene‐environment interactions. Am J Hum Genet 79: 1002 – 1016.en_US
dc.identifier.citedreferenceBookman E, McAllister K, Gillanders E, Wanke K, Balshaw D, Rutter J, Reedy J, Shaughnessy D, Agurs‐Collins T, Paltoo D and others,. 2011. Gene‐environment interplay in common complex diseases: forging an integrative model—recommendations from an NIH workshop. Genet Epidemiol 35: 217 – 225.en_US
dc.identifier.citedreferenceBarhdadi A, Dubé M. 2010. Testing for gene‐gene interaction with AMMI models. Stat Appl Genet Mol Biol 9: 1 – 27.en_US
dc.identifier.citedreferenceZobel R, Wright M, Gauch H. 1988. Statistical analysis of a yield trial. Agron J 80: 388 – 393.en_US
dc.identifier.citedreferenceMilliken G, Johnson D. 1989. Analysis of Messy Data, Volume II: Nonreplicated Experiments. New York: Van Nostrand Reinhold.en_US
dc.identifier.citedreferenceMandel J. 1971. A new analysis of variance model for non‐additive data. Technometrics 13: 1 – 18.en_US
dc.identifier.citedreferenceMandel J. 1961. Non‐additivity in two‐way analysis of variance. J Am Stat Assoc 56: 878 – 888.en_US
dc.identifier.citedreferenceMaity A, Carroll R, Mammen E, Chatterjee N. 2009. Testing in semiparametric models with interaction, with applications to gene–environment interactions. J R Stat Soc Ser B Stat Methodol 71: 75 – 96.en_US
dc.identifier.citedreferenceLin X, Zhang D. 1999. Inference in generalized additive mixed models by using smoothing splines. J R Stat Soc Ser B Stat Methodol 61: 381 – 400.en_US
dc.identifier.citedreferenceLiang K, Zeger S. 1986. Longitudinal data analysis using generalized linear models. Biometrika 73: 13 – 22.en_US
dc.identifier.citedreferenceJung J, Sun B, Kwon D, Koller D, Foroud T. 2009. Allelic‐based gene‐gene interaction associated with quantitative traits. Genet Epidemiol 33: 332 – 343.en_US
dc.identifier.citedreferenceHanumara R, Thompson W Jr. 1968. Percentage points of the extreme roots of a Wishart matrix. Biometrika 55: 505 – 512.en_US
dc.identifier.citedreferenceGollob H. 1968. A statistical model which combines features of factor analytic and analysis of variance techniques. Psychometrika 33: 73 – 115.en_US
dc.identifier.citedreferenceGabriel K, Zamir S. 1979. Lower rank approximation of matrices by least squares with any choice of weights. Technometrics 21: 489 – 498.en_US
dc.identifier.citedreferenceFreeman G. 1973. Statistical methods for the analysis of genotype‐environment interactions. Heredity 31: 339 – 354.en_US
dc.identifier.citedreferenceFan R, Albert P, Schisterman E. 2012. A discussion of gene–gene and gene–environment interactions and longitudinal genetic analysis of complex traits. Stat Med 31: 2565 – 2568.en_US
dc.identifier.citedreferenceTukey J. 1949. One degree of freedom for non‐additivity. Biometrics 5: 232 – 242.en_US
dc.identifier.citedreferenceTukey J. 1962. The future of data analysis. Ann Math Stat 33: 1 – 67.en_US
dc.identifier.citedreferenceWong M, Day N, Luan J, Chan K, Wareham N. 2003. The detection of gene–environment interaction for continuous traits: should we deal with measurement error by bigger studies or better measurement ? Int J Epidemiol 32: 51 – 57.en_US
dc.identifier.citedreferenceCulverhouse R, Klein T, Shannon W. 2004. Detecting epistatic interactions contributing to quantitative traits. Genet Epidemiol 27: 141 – 152.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.