Show simple item record

Infinite Secondary Building Units and Forbidden Catenation in Metal‐Organic Frameworks

dc.contributor.authorRosi, Nathaniel L.en_US
dc.contributor.authorEddaoudi, Mohameden_US
dc.contributor.authorKim, Jaheonen_US
dc.contributor.authorO'Keeffe, Michaelen_US
dc.contributor.authorYaghi, Omar M.en_US
dc.date.accessioned2013-09-04T17:18:32Z
dc.date.available2013-09-04T17:18:32Z
dc.date.issued2002-01-18en_US
dc.identifier.citationRosi, Nathaniel L.; Eddaoudi, Mohamed; Kim, Jaheon; O'Keeffe, Michael; Yaghi, Omar M. (2002). "Infinite Secondary Building Units and Forbidden Catenation in Metal‐Organic Frameworks." Angewandte Chemie International Edition 41(2): 284-287. <http://hdl.handle.net/2027.42/99644>en_US
dc.identifier.issn1433-7851en_US
dc.identifier.issn1521-3773en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99644
dc.publisherWILEY‐VCH Verlag GmbHen_US
dc.subject.otherCarboxylate Ligandsen_US
dc.subject.otherInterpenetrationen_US
dc.subject.otherCopolymerizationen_US
dc.subject.otherZincen_US
dc.subject.otherZeolite Analoguesen_US
dc.subject.otherSecondary Building Unitsen_US
dc.titleInfinite Secondary Building Units and Forbidden Catenation in Metal‐Organic Frameworksen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMaterials Design and Discovery Group Department of Chemistry University of Michigan Ann Arbor, MI 48109‐1055, USA, Fax: (+1) 734‐615‐9751en_US
dc.contributor.affiliationotherDepartment of Chemistry and Biochemistry Arizona State University Tempe, AZ 85287‐1604, USAen_US
dc.identifier.pmid12491410en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99644/1/284_ftp.pdf
dc.identifier.doi10.1002/1521-3773(20020118)41:2<284::AID-ANIE284>3.0.CO;2-Men_US
dc.identifier.sourceAngewandte Chemie International Editionen_US
dc.identifier.citedreference en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceO. M. Yaghi, H. Li, C. Davis, D. Richardson, T. L. Groy, Acc. Chem. Res. 1998, 31, 474;en_US
dc.identifier.citedreferenceL. R. MacGillivray, S. Subramanian, M. J. Zaworotko, Chem. Commun. 1994, 1325;en_US
dc.identifier.citedreferenceS. Kitagawa, M. Kondo, Bull. Chem. Soc. Jpn. 1998, 71, 1739 – 1753;en_US
dc.identifier.citedreferenceC. Klein, E. Graf, M. W. Hossieni, De Cian, New J. Chem. 2001, 25, 207 – 209;en_US
dc.identifier.citedreferenceO. R. Evans, Z. Wang, R. G. Xiong, B. M. Foxman, W. Lin, Inorg. Chem., 1999, 38, 2969 – 2973;en_US
dc.identifier.citedreferenceL. Carlucci, G. Ciani, P. Macchi, D. M. Proserpio, S. Rizzato, Chem. Eur. J. 1999, 5, 237 – 243.en_US
dc.identifier.citedreferenceM. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O′Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319 – 330.en_US
dc.identifier.citedreferenceH. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402, 276 – 279.en_US
dc.identifier.citedreferenceX‐ray structure data: Siemens SMART CCD diffractometer, ω scans, graphite‐monochromated Mo Kα radiation, SAINT for data integration, SADABS for absorption correction, XPREP for correction of Lorentz and polarization effects, and structure solution with direct methods (teXsan [17] for MOF‐69A, SHELX‐TL [18] for MOF‐69B).en_US
dc.identifier.citedreferenceData collection for MOF‐69A: A colorless columnar crystal was analyzed: approximate dimensions: 0.30×0.090×0.080 mm at −120 °C, monoclinic, space group C 2 /c (no. 15) with a =23.1179(11), b =20.9192(5), c =12.0021(5) Å, β =111.627(2)°, V= 5395.7(4) Å 3, Z =4, ρ calcd = 1.417 g cm −3, μ (Mo Kα )=13.90 cm −1, F (000)=2400, 3530 unique reflections within 2 θ max =43.9°, T max =0.87, T min =0.57. The zinc atoms were refined anisotropically, while the rest were refined isotropically. Hydrogen atoms were included in predicted positions for the ligand and the ordered DEF molecule but not refined. The final cycle of full‐matrix least‐squares refinement was based on 1339 observed reflections ( I >2.50 σ ( I )) and 171 variable parameters and refined to convergence R 1 =0.060 and R w (all data) = 0.066. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.64 and −0.55 e −  Å −3, respectively. While a hydrogen‐bonded DEF molecule was defined well, the other DEF guest molecule was not modeled suitably due to the severe disorder around a mirror plane.en_US
dc.identifier.citedreferenceData collection for MOF‐69B: A colorless needle crystal was analyzed: approximate dimensions: 0.12×0.020×0.020 mm at −115 °C, monoclinic, space group C 2 /c (no. 15) with a =20.1658(15), b =18.5518(14), c =12.1580(9) Å, β =95.331(1)°, V= 4528.8(6) Å 3, Z= 4, ρ calcd = 1.612 g cm −3, and μ (Mo Kα )=16.54 cm −1, F (000)=2288, 4647 unique reflections within 2 θ max =52.86°, T max =0.97, T min =0.75. All non‐hydrogen atoms were refined anisotropically. The hydrogen atoms of the ndc ligand and the six methyl hydrogen atoms in a DEF molecule were generated with idealized geometries. The hydrogen atoms in both the hydroxy group and the DEF molecule were found in the electron density map and their positional parameters were refined. The final cycle of full‐matrix least‐squares refinement was based on 2282 observed reflections ( I >2.00 σ ( I )) and 294 variable parameters and refined to convergence R 1 =0.0587 and R w = 0.1855. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.854 and −0.761 e −  Å −3, respectively.en_US
dc.identifier.citedreferenceAll crystal structures in this report may be viewed and manipulated on the web: http://www.umich.edu/∼yaghigrp/structures.html Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC‐170965 (MOF‐69A) and CCDC‐170966 (MOF‐69B). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223‐336‐033; e‐mail: deposit@ccdc.cam.ac.uk).en_US
dc.identifier.citedreferenceJ. Tao, M. L. Tong, J. X. Shi, X. M. Chen, S. W. Ng, Chem. Commun. 2000, 2043;en_US
dc.identifier.citedreferenceW. Clegg, D. R. Harbron, C. D. Homan, P. A. Hunt, I. R. Little, B. P. Straughan, Inorg. Chim. Acta. 1991, 186, 51;en_US
dc.identifier.citedreferenceJ. Hermann, A. Erxleben, Inorg. Chim. Acta. 2000, 304, 125.en_US
dc.identifier.citedreferenceJ. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature 2000, 404, 982.en_US
dc.identifier.citedreferenceVan der Waals radii of C (1.70 Å) and O (1.40 Å) were employed in determination of distance parameters. A. Bondi, J. Phys. Chem. 1964, 68, 441 – 451.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceM. O'Keeffe, M. Eddaoudi, H. Li, T. M. Reineke, O. M. Yaghi, J. Solid State Chem. 2000, 152, 3 – 20;en_US
dc.identifier.citedreferenceM. O'Keeffe, B. G. Hyde, Crystal Structures. I. Patterns and symmetry, Mineralogical Society of America, Washington, DC, 1996.en_US
dc.identifier.citedreferenceOther structures types such as the B net in CaB 6 can be adapted to the same strategy. Here, linking octahedral SBUs with both short and long links, of the proper length ratio, that have been designed to lie along perpendicular planes would yield frameworks that do not catenate. This is well‐represented in the structure of [Zn(4,4′‐bpy) 2 (SiF 6 ) n ] n ⋅ x  DMF (4,4′‐bpy=4,4′‐bipyridine: S. Subramanian, M. Zaworotko, Angew. Chem. 1995, 107, 2295 – 2297; Angew. Chem. Int. Ed. Engl. 1995, 34, 2127 – 2129.en_US
dc.identifier.citedreferenceCalculated free volumes were obtained by using Cerius 2 software.en_US
dc.identifier.citedreferenceElemental analysis for the exchange products of [Zn 3 (OH) 2 (bpdc) 2 ]⋅(G) g; G=guest. Guests: (C 6 H 6 ) 3.5: calcd: C 59.81, H 3.99, N 0.00; found: C 60.16, H 3.76, N 0.00. (CHCl 3 ) 3.5: calcd: C 33.53, H 1.92, N 0.00; found: C 33.35, H 1.78, N 0.00. ( i C 3 H 7 OH) 0.5: calcd: C 44.48, H 2.63, N 0.00; found: C 44.78, H 2.56, N 0.00. (C 4 H 8 O) 2: calcd: C 47.88, H 3.77, N 0.00; found: C 48.01, H 3.73, N 0.00. (CH 3 C 6 H 5 ) 3.75: calcd: C 61.70, H 4.58, N 0.00; found: C 61.69, H 4.70, N 0.00. Similar results were obtained with MOF‐69B.en_US
dc.identifier.citedreferenceM. Eddaoudi, H. Li, O. M. Yaghi, J. Am. Chem. Soc. 2000, 122, 1391 – 1397.en_US
dc.identifier.citedreferenceInterpenetration, maximal displacement of catenated frameworks. For example see:en_US
dc.identifier.citedreferenceS. R. Batten, R. Robson, Angew. Chem. 1998, 110, 1558 – 1595; Angew. Chem. Int. Ed. 1998, 37, 1460 – 1494;en_US
dc.identifier.citedreferenceK. A. Hirsch, S. R. Wilson, J. S. Moore, Chem. Eur. J. 1997, 3, 765;en_US
dc.identifier.citedreferenceT. M. Reineke, M. Eddaoudi, D. Moler, M. O'Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2000, 122, 4843. Interweaving, minimal displacement of catenated frameworks. For example:en_US
dc.identifier.citedreferenceB. Chen, M. Eddaoudi, S. T. Hyde, M. O'Keeffe, O. M. Yaghi, Science 2001, 291, 1021.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.