Show simple item record

Development of behavioral preferences for the optimal choice following unexpected reward omission is mediated by a reduction of D 2‐like receptor tone in the nucleus accumbens

dc.contributor.authorPorter‐stransky, Kirsten A.en_US
dc.contributor.authorSeiler, Jillian L.en_US
dc.contributor.authorDay, Jeremy J.en_US
dc.contributor.authorAragona, Brandon J.en_US
dc.date.accessioned2013-09-04T17:18:33Z
dc.date.available2014-10-06T19:17:42Zen_US
dc.date.issued2013-08en_US
dc.identifier.citationPorter‐stransky, Kirsten A. ; Seiler, Jillian L.; Day, Jeremy J.; Aragona, Brandon J. (2013). "Development of behavioral preferences for the optimal choice following unexpected reward omission is mediated by a reduction of D 2â like receptor tone in the nucleus accumbens." European Journal of Neuroscience 38(4): 2572-2588. <http://hdl.handle.net/2027.42/99645>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99645
dc.description.abstractTo survive in a dynamic environment, animals must identify changes in resource availability and rapidly apply adaptive strategies to obtain resources that promote survival. We have utilised a behavioral paradigm to assess differences in foraging strategy when resource (reward) availability unexpectedly changes. When reward magnitude was reduced by 50% (receive one reward pellet instead of two), male and female rats developed a preference for the optimal choice by the second session. However, when an expected reward was omitted (receive no reward pellets instead of one), subjects displayed a robust preference for the optimal choice during the very first session. Previous research shows that, when an expected reward is omitted, dopamine neurons phasically decrease their firing rate, which is hypothesised to decrease dopamine release preferentially affecting D 2‐like receptors. As robust changes in behavioral preference were specific to reward omission, we tested this hypothesis and the functional role of D 1‐ and D 2‐like receptors in the nucleus accumbens in mediating the rapid development of a behavioral preference for the rewarded option during reward omission in male rats. Blockade of both receptor types had no effect on this behavior; however, holding D 2‐like, but not D 1‐like, receptor tone via infusion of dopamine receptor agonists prevented the development of the preference for the rewarded option during reward omission. These results demonstrate that avoiding an outcome that has been tagged with aversive motivational properties is facilitated through decreased dopamine transmission and subsequent functional disruption of D 2‐like, but not D 1‐like, receptor tone in the nucleus accumbens. This study investigates the role of dopamine receptors in the nucleus accumbens in altering behavior in response to the omission of an expected reward. Similarly to controls, multiple doses of a D 1‐like receptor agonist, D 1‐like receptor antagonist, and D 2‐like receptor antagonist do not prevent subjects from developing a robust behavioral preference for the rewarded lever and avoiding the omitted‐reward lever during the first session of reward omission. However, the D 2‐like agonist quinpirole dose‐dependently blocks a behavioral preference for the rewarded lever, suggesting that reductions in D 2‐like receptor tone are necessary for altering behavior away from an aversive option and toward the optimal choice.en_US
dc.publisherOxford University Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherRewarden_US
dc.subject.otherBehavioral Flexibilityen_US
dc.subject.otherDopamineen_US
dc.subject.otherMotivated Behavioren_US
dc.subject.otherRaten_US
dc.titleDevelopment of behavioral preferences for the optimal choice following unexpected reward omission is mediated by a reduction of D 2‐like receptor tone in the nucleus accumbensen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23692625en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99645/1/ejn12253.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99645/2/ejn12253-sup-0001-Supplement.pdf
dc.identifier.doi10.1111/ejn.12253en_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceRana, A.Q., Masroor, M.S. & Khan, A.S. ( 2013 ) A review of methods used to study cognitive deficits in Parkinson's disease. Neurol. Res., 35, 1 – 6.en_US
dc.identifier.citedreferenceSarter, M. & Fritschy, J.M. ( 2008 ) Reporting statistical methods and statistical results in EJN. Eur. J. Neurosci., 28, 2363 – 2364.en_US
dc.identifier.citedreferenceSastre, A. & Reilly, S. ( 2006 ) Excitotoxic lesions of the gustatory thalamus eliminate consummatory but not instrumental successive negative contrast in rats. Behav. Brain Res., 170, 34 – 40.en_US
dc.identifier.citedreferenceSchultz, W. ( 1998 ) Predictive reward signal of dopamine neurons. J. Neurophysiol., 80, 1 – 27.en_US
dc.identifier.citedreferenceSchultz, W., Dayan, P. & Montague, P.R. ( 1997 ) A neural substrate of prediction and reward. Science, 275, 1593 – 1599.en_US
dc.identifier.citedreferenceShou, M., Ferrario, C.R., Schultz, K.N., Robinson, T.E. & Kennedy, R.T. ( 2006 ) Monitoring dopamine in vivo by microdialysis sampling and on‐line CE‐laser‐induced fluorescence. Anal. Chem., 78, 6717 – 6725.en_US
dc.identifier.citedreferenceSkinner, B.F. ( 1953 ) Science and human behavior. Free Press.en_US
dc.identifier.citedreferenceStephens, D.W. & Krebs, J.R. ( 1986 ) Foraging Theory. Princeton University Press, Princeton, NJ.en_US
dc.identifier.citedreferenceStopper, C.M., Khayambashi, S. & Floresco, S.B. ( 2013 ). Receptor‐specific modulation of risk‐based decision making by nucleus accumbens dopamine. Neuropsychopharmacol., 198, 3 – 18.en_US
dc.identifier.citedreferenceSugam, J.A., Day, J.J., Wightman, R.M. & Carelli, R.M. ( 2012 ) Phasic nucleus accumbens dopamine encodes risk‐based decision‐making behavior. Biol. Psychiat., 198, 3 – 18.en_US
dc.identifier.citedreferenceSurmeier, D., Carrillo‐Reid, L. & Bargas, J. ( 2011 ) Dopaminergic modulation of striatal neurons, circuits, and assemblies. Neuroscience, 198, 3 – 18.en_US
dc.identifier.citedreferenceSutcliffe, J.S. ( 2011 ) Female rats are smarter than males: influence of test, oestrogen receptor subtypes and glutamate. Curr. Top. Behav. Neurosci., 8, 37 – 56.en_US
dc.identifier.citedreferenceSwanson, C.J., Heath, S., Stratford, T.R. & Kelley, A.E. ( 1997 ) Differential behavioral responses to dopaminergic stimulation of nucleus accumbens subregions in the rat. Pharmacol. Biochem. Be., 58, 933 – 945.en_US
dc.identifier.citedreferenceTinklepaugh, O.L. ( 1928 ) An experimental study of representative factors in monkeys. J. Comp. Psychol., 8, 197.en_US
dc.identifier.citedreferenceVan Haaren, F., Van Hest, A. & Heinsbroek, R.P.W. ( 1990 ) Behavioral differences between male and female rats: effects of gonadal hormones on learning and memory. Neurosci. Biobehav. R., 14, 23 – 33.en_US
dc.identifier.citedreferenceVeeneman, M., van Ast, M., Broekhoven, M., Limpens, J. & Vanderschuren, L. ( 2012 ) Seeking–taking chain schedules of cocaine and sucrose self‐administration: effects of reward size, reward omission, and α‐flupenthixol. Psychopharmacology, 220, 771 – 785.en_US
dc.identifier.citedreferenceVezina, P. ( 2004 ) Sensitization of midbrain dopamine neuron reactivity and the self‐administration of psychomotor stimulant drugs. Neurosci. Biobehav. R., 27, 827 – 839.en_US
dc.identifier.citedreferenceVindas, M.A., Folkedal, O., Kristiansen, T.S., Stien, L.H., Braastad, B.O., Mayer, I. & Overli, O. ( 2012 ) Omission of expected reward agitates Atlantic salmon (Salmo salar). Anim. Cogn., 15, 903 – 911.en_US
dc.identifier.citedreferenceVoon, V., Pessiglione, M., Brezing, C., Gallea, C., Fernandez, H.H., Dolan, R.J. & Hallett, M. ( 2010 ) Mechanisms underlying dopamine‐mediated reward bias in compulsive behaviors. Neuron, 65, 135 – 142.en_US
dc.identifier.citedreferenceWaelti, P., Dickinson, A. & Schultz, W. ( 2001 ) Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412, 43 – 48.en_US
dc.identifier.citedreferenceWolterink, G., Phillips, G., Cador, M., Donselaar‐Wolterink, I., Robbins, T.W. & Everitt, B.J. ( 1993 ) Relative roles of ventral striatal D1 and D2 dopamine receptors in responding with conditioned reinforcement. Psychopharmacology, 110, 355 – 364.en_US
dc.identifier.citedreferenceYoung, A.M. ( 2004 ) Increased extracellular dopamine in nucleus accumbens in response to unconditioned and conditioned aversive stimuli: studies using 1 min microdialysis in rats. J. Neurosci. Meth., 138, 57 – 63.en_US
dc.identifier.citedreferenceYoung, E.J. & Williams, C.L. ( 2010 ) Valence dependent asymmetric release of norepinephrine in the basolateral amygdala. Behav. Neurosci., 124, 633 – 644.en_US
dc.identifier.citedreferenceZahm, D.S. ( 1999 ) Functional‐anatomical Implications of the nucleus accumbens core and shell subterritories. Ann. NY Acad. Sci., 877, 113 – 128.en_US
dc.identifier.citedreferenceBoye, S.M., Grant, R.J. & Clarke, P. ( 2001 ) Disruption of dopaminergic neurotransmission in nucleus accumbens core inhibits the locomotor stimulant effects of nicotine and D‐amphetamine in rats. Neuropharmacology, 40, 792 – 805.en_US
dc.identifier.citedreferenceBromberg‐Martin, E.S., Matsumoto, M. & Hikosaka, O. ( 2010 ) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron, 68, 815 – 834.en_US
dc.identifier.citedreferenceBrown, H.D., McCutcheon, J.E., Cone, J.J., Ragozzino, M.E. & Roitman, M.F. ( 2011 ) Primary food reward and reward‐predictive stimuli evoke different patterns of phasic dopamine signaling throughout the striatum. Eur. J. Neurosci., 34, 1997 – 2006.en_US
dc.identifier.citedreferenceAdelman, H.M. & Maatsch, J.L. ( 1956 ) Learning and extinction based upon frustration, food reward, and exploratory tendency. J. Exp. Psychol., 52, 311.en_US
dc.identifier.citedreferenceAmsel, A. ( 1958 ) The role of frustrative nonreward in noncontinuous reward situations. Psychol. Bull., 55, 102.en_US
dc.identifier.citedreferenceAnnett, L.E., McGregor, A. & Robbins, T.W. ( 1989 ) The effects of ibotenic acid lesions of the nucleus accumbens on spatial learning and extinction in the rat. Behav. Brain Res., 31, 231 – 242.en_US
dc.identifier.citedreferenceAnstrom, K.K., Miczek, K.A. & Budygin, E.A. ( 2009 ) Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats. Neuroscience, 161, 3 – 12.en_US
dc.identifier.citedreferenceAragona, B.J. ( 2011 ) The regional specificity of rapid actions of cocaine. Nat. Rev. Neurosci., 12, 700.en_US
dc.identifier.citedreferenceAragona, B.J. & Wang, Z. ( 2009 ) Dopamine regulation of social choice in a monogamous rodent species. Front. Behav. Neurosci., 3, 1 – 11.en_US
dc.identifier.citedreferenceAragona, B.J., Liu, Y., Yu, Y.J., Curtis, J.T., Detwiler, J.M., Insel, T.R. & Wang, Z. ( 2006 ) Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nat. Neurosci., 9, 133 – 139.en_US
dc.identifier.citedreferenceAragona, B.J., Cleaveland, N.A., Stuber, G.D., Day, J.J., Carelli, R.M. & Wightman, R.M. ( 2008 ) Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. J. Neurosci., 28, 8821 – 8831.en_US
dc.identifier.citedreferenceAragona, B.J., Day, J.J., Roitman, M.F., Cleaveland, N.A., Wightman, R.M. & Carelli, R.M. ( 2009 ) Regional specificity in the real‐time development of phasic dopamine transmission patterns during acquisition of a cue‐cocaine association in rats. Eur. J. Neurosci., 30, 1889 – 1899.en_US
dc.identifier.citedreferenceBadiani, A., Morano, M.I., Akil, H. & Robinson, T.E. ( 1995 ) Circulating adrenal hormones are not necessary for the development of sensitization to the psychomotor activating effects of amphetamine. Brain Res., 673, 13 – 24.en_US
dc.identifier.citedreferenceBadrinarayan, A., Wescott, S.A., Vander Weele, C.M., Saunders, B.T., Couturier, B.E., Maren, S. & Aragona, B.J. ( 2012 ) Aversive stimuli differentially modulate real‐time dopamine transmission dynamics within the nucleus accumbens core and shell. J. Neurosci., 32, 15779 – 15790.en_US
dc.identifier.citedreferenceBaker, T.W., Weisman, R.G. & Beninger, R.J. ( 2012 ). Reinforcer devaluation by extinction depends on the food restriction protocol. Behav. Process., 90, 124 – 129.en_US
dc.identifier.citedreferenceBaldo, B.A., Sadeghian, K., Basso, A.M. & Kelley, A.E. ( 2002 ) Effects of selective dopamine D1 or D2 receptor blockade within nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav. Brain Res., 137, 165 – 177.en_US
dc.identifier.citedreferenceBecker, J.B. ( 2009 ) Sexual differentiation of motivation: a novel mechanism? Horm. Behav., 55, 646 – 654.en_US
dc.identifier.citedreferenceBecker, J.B. & Taylor, J.R. ( 2008 ) Sex differences in motivation. In Becker, J.B. (ed) Sex Differences in the Brain: From Genes to Behavior. Oxford University Press, New York, NY, pp. 177 – 199.en_US
dc.identifier.citedreferenceBecker, J.B., Arnold, A.P., Berkley, K.J., Blaustein, J.D., Eckel, L.A., Hampson, E., Herman, J.P., Marts, S., Sadee, W., Steiner, M., Taylor, J. & Young, E. ( 2005 ) Strategies and methods for research on sex differences in brain and behavior. Endocrinology, 146, 1650 – 1673.en_US
dc.identifier.citedreferenceBeery, A.K. & Zucker, I. ( 2011 ) Sex bias in neuroscience and biomedical research. Neurosci. Biobehav. R., 35, 565 – 572.en_US
dc.identifier.citedreferenceBerridge, K.C. ( 2012 ) From prediction error to incentive salience: mesolimbic computation of reward motivation. Eur. J. Neurosci., 35, 1124 – 1143.en_US
dc.identifier.citedreferenceBoschen, S.L., Wietzikoski, E.C., Winn, P. & Cunha, C.D. ( 2011 ) The role of nucleus accumbens and dorsolateral striatal D2 receptors in active avoidance conditioning. Neurobiol. Learn. Mem., 96, 254 – 262.en_US
dc.identifier.citedreferenceBrown, S.D. & Peters, J.C. ( 2004 ) Hydrogenolysis of [PhBP3]Fe[triple bond]N‐p‐tolyl: probing the reactivity of an iron imide with H2. J. Am. Chem. Soc., 126, 4538 – 4539.en_US
dc.identifier.citedreferenceCardinal, R.N., Pennicott, D.R., Lakmali, C., Robbins, T.W. & Everitt, B.J. ( 2001 ) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science, 292, 2499 – 2501.en_US
dc.identifier.citedreferenceCools, R., Altamirano, L. & D'Esposito, M. ( 2006 ) Reversal learning in Parkinson's disease depends on medication status and outcome valence. Neuropsychologia, 44, 1663 – 1673.en_US
dc.identifier.citedreferenceCools, R., Lewis, S.J.G., Clark, L., Barker, R.A. & Robbins, T.W. ( 2007 ) L‐DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson's disease. Neuropsychopharmacol., 32, 180 – 189.en_US
dc.identifier.citedreferenceCorbit, L.H., Muir, J.L. & Balleine, B.W. ( 2001 ) The role of the nucleus accumbens in instrumental conditioning: evidence of a functional dissociation between accumbens core and shell. J. Neurosci., 21, 3251 – 3260.en_US
dc.identifier.citedreferenceCrespi, L.P. ( 1942 ) Quantitative variation of incentive and performance in the white rat. Am. J. Psychol., 55, 467 – 517.en_US
dc.identifier.citedreferenceCrombag, H., Mueller, H., Browman, K., Badiani, A. & Robinson, T. ( 1999 ) A comparison of two behavioral measures of psychomotor activation following intravenous amphetamine or cocaine: dose‐and sensitization‐dependent changes. Behav. Pharmacol., 10, 205.en_US
dc.identifier.citedreferenceDalla, C. & Shors, T.J. ( 2009 ) Sex differences in learning processes of classical and operant conditioning. Physiol. Behav., 97, 229 – 238.en_US
dc.identifier.citedreferenceDalley, J.W. & Everitt, B.J. ( 2009 ) Dopamine receptors in the learning, memory and drug reward circuitry. Semin. Cell Dev. Biol., 20, 403 – 410.en_US
dc.identifier.citedreferenceDaly, H.B. ( 1969a ) Aversive properties of partial and varied reinforcement during runway acquisition. J. Exp. Psychol., 81, 54.en_US
dc.identifier.citedreferenceDaly, H.B. ( 1969b ) Is instrumental responding necessary for nonreward following reward to be frustrating? J. Exp. Psychol., 80, 186.en_US
dc.identifier.citedreferenceDaly, H.B. ( 1969c ) Learning of a hurdle‐jump response to escape cues paired with reduced reward or frustrative nonreward. J. Exp. Psychol., 79, 146.en_US
dc.identifier.citedreferenceDaly, H.B. ( 1974 ) Reinforcing properties of escape from frustration aroused in various learning situations. Psychol. Learn. Motiv., 8, 187 – 231.en_US
dc.identifier.citedreferenceDavid, H.N., Sissaoui, K. & Abraini, J.H. ( 2004 ) Modulation of the locomotor responses induced by D1‐like and D2‐like dopamine receptor agonists and D‐amphetamine by NMDA and non‐NMDA glutamate receptor agonists and antagonists in the core of the rat nucleus accumbens. Neuropharmacology, 46, 179 – 191.en_US
dc.identifier.citedreferenceDay, J.J., Jones, J.L., Wightman, R.M. & Carelli, R.M. ( 2010 ) Phasic nucleus accumbens dopamine release encodes effort‐ and delay‐related costs. Biol. Psychiat., 68, 306 – 309.en_US
dc.identifier.citedreferenceDay, J.J., Jones, J.L. & Carelli, R.M. ( 2011 ) Nucleus accumbens neurons encode predicted and ongoing reward costs in rats. Eur. J. Neurosci., 33, 308 – 321.en_US
dc.identifier.citedreferenceDay, J.J., Roitman, M.F., Wightman, R.M. & Carelli, R.M. ( 2007 ) Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat. Neurosci., 10, 1020 – 1028.en_US
dc.identifier.citedreferenceDi Chiara, G. ( 2002 ) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav. Brain Res., 137, 75 – 114.en_US
dc.identifier.citedreferenceDreher, J.K. & Jackson, D.M. ( 1989 ) Role of D1 and D2 dopamine receptors in mediating locomotor activity elicited from the nucleus accumbens of rats. Brain Res., 487, 267 – 277.en_US
dc.identifier.citedreferenceDreyer, J.K., Herrik, K.F., Berg, R.W. & Hounsgaard, J.D. ( 2010 ) Influence of phasic and tonic dopamine release on receptor activation. J. Neurosci., 30, 14273 – 14283.en_US
dc.identifier.citedreferenceFloresco, S., McLaughlin, R. & Haluk, D. ( 2008 ) Opposing roles for the nucleus accumbens core and shell in cue‐induced reinstatement of food‐seeking behavior. Neuroscience, 154, 877 – 884.en_US
dc.identifier.citedreferenceFloresco, S.B., Ghods‐Sharifi, S., Vexelman, C. & Magyar, O. ( 2006 ) Dissociable roles for the nucleus accumbens core and shell in regulating set shifting. J. Neurosci., 26, 2449 – 2457.en_US
dc.identifier.citedreferenceFrank, M.J. ( 2005 ) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J. Cognitive Neurosci., 17, 51 – 72.en_US
dc.identifier.citedreferenceFrank, M.J., Seeberger, L.C. & O'Reilly, R.C. ( 2004 ) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306, 1940 – 1943.en_US
dc.identifier.citedreferenceGan, J.O., Walton, M.E. & Phillips, P.E. ( 2010 ) Dissociable cost and benefit encoding of future rewards by mesolimbic dopamine. Nat. Neurosci., 13, 25 – 27.en_US
dc.identifier.citedreferenceGerfen, C.R. & Surmeier, D.J. ( 2011 ) Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci., 34, 441 – 466.en_US
dc.identifier.citedreferenceGirard, I. & Garland, T. Jr. ( 2002 ) Plasma corticosterone response to acute and chronic voluntary exercise in female house mice. J. Appl. Physiol., 92, 1553 – 1561.en_US
dc.identifier.citedreferenceGlimcher, P.W. ( 2011 ) Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proc. Natl. Acad. Sci. USA, 108, 15647 – 15654.en_US
dc.identifier.citedreferenceGonzalez, R. ( 2009 ) Data Analysis for Experimental Design. Guilford Press, New York.en_US
dc.identifier.citedreferenceHaluk, D.M. & Floresco, S.B. ( 2009 ) Ventral striatal dopamine modulation of different forms of behavioral flexibility. Neuropsychopharmacol., 34, 2041 – 2052.en_US
dc.identifier.citedreferenceHanlon, E.C., Benca, R.M., Baldo, B.A. & Kelley, A.E. ( 2010 ) REM sleep deprivation produces a motivational deficit for food reward that is reversed by intra‐accumbens amphetamine in rats. Brain Res. Bull., 83, 245 – 254.en_US
dc.identifier.citedreferenceHenry, D.J., Hu, X.T. & White, F.J. ( 1998 ) Adaptations in the mesoaccumbens dopamine system resulting from repeated administration of dopamine D1 and D2 receptor‐selective agonists: relevance to cocaine sensitization. Psychopharmacology, 140, 233 – 242.en_US
dc.identifier.citedreferenceHikida, T., Kimura, K., Wada, N., Funabiki, K. & Nakanishi, S. ( 2010 ) Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron, 66, 896 – 907.en_US
dc.identifier.citedreferenceHong, S. & Hikosaka, O. ( 2011 ) Dopamine‐mediated learning and switching in cortico‐striatal circuit explain behavioral changes in reinforcement learning. Front. Behav. Neurosci., 5, 1 – 17.en_US
dc.identifier.citedreferenceHooper, K.C., Banks, D.A., Stordahl, L.J., White, I.M. & Rebec, G.V. ( 1997 ) Quinpirole inhibits striatal and excites pallidal neurons in freely moving rats. Neurosci. Lett., 237, 69 – 72.en_US
dc.identifier.citedreferenceIkemoto, S. ( 2007 ) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens‐olfactory tubercle complex. Brain Res. Rev., 56, 27 – 78.en_US
dc.identifier.citedreferenceJonasson, Z. ( 2005 ) Meta‐analysis of sex differences in rodent models of learning and memory: a review of behavioral and biological data. Neurosci. Biobehav. R., 28, 811 – 825.en_US
dc.identifier.citedreferenceJoseph, J., Wang, Y.‐M., Miles, P., Budygin, E., Picetti, R., Gainetdinov, R., Caron, M. & Wightman, R. ( 2002 ) Dopamine autoreceptor regulation of release and uptake in mouse brain slices in the absence of D 3 receptors. Neuroscience, 112, 39 – 49.en_US
dc.identifier.citedreferenceKalivas, P.W. & Duffy, P. ( 1991 ) A comparison of axonal and somatodendritic dopamine release using in vivo dialysis. J. Neurochem., 56, 961 – 967.en_US
dc.identifier.citedreferenceKawagoe, K.T., Garris, P.A., Wiedemann, D.J. & Wightman, R.M. ( 1992 ) Regulation of transient dopamine concentration gradients in the microenvironment surrounding nerve terminals in the rat striatum. Neuroscience, 51, 55 – 64.en_US
dc.identifier.citedreferenceKelley, A.E. ( 1999 ) Functional specificity of ventral striatal compartments in appetitive behaviors. Ann. NY Acad. Sci., 877, 71 – 90.en_US
dc.identifier.citedreferenceKelley, A.E. & Berridge, K.C. ( 2002 ) The neuroscience of natural rewards: relevance to addictive drugs. J. Neurosci., 22, 3306 – 3311.en_US
dc.identifier.citedreferenceKerfoot, E.C., Chattillion, E.A. & Williams, C.L. ( 2008 ) Functional interactions between the nucleus tractus solitarius (NTS) and nucleus accumbens shell in modulating memory for arousing experiences. Neurobiol. Learn. Mem., 89, 47 – 60.en_US
dc.identifier.citedreferenceKinsley, C.H., Madonia, L., Gifford, G.W., Tureski, K., Griffin, G.R., Lowry, C., Williams, J., Collins, J., McLearie, H. & Lambert, K.G. ( 1999 ). Motherhood improves learning and memory: neural activity in rats is enhanced by pregnancy and the demands of rearing offspring. Nature, 401, 137 – 138.en_US
dc.identifier.citedreferenceKoeltzow, T.E., Austin, J.D. & Vezina, P. ( 2003 ) Behavioral sensitization to quinpirole is not associated with increased nucleus accumbens dopamine overflow. Neuropharmacology, 44, 102 – 110.en_US
dc.identifier.citedreferenceKravitz, A.V., Freeze, B.S., Parker, P.R.L., Kay, K., Thwin, M.T., Deisseroth, K. & Kreitzer, A.C. ( 2010 ) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 466, 622 – 626.en_US
dc.identifier.citedreferenceKravitz, A.V., Tye, L.D. & Kreitzer, A.C. ( 2012 ) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci., 15, 816 – 818.en_US
dc.identifier.citedreferenceKreitzer, A. & Berke, J. ( 2011 ) Investigating striatal function through cell‐type‐specific manipulations. Neuroscience, 198, 19 – 26.en_US
dc.identifier.citedreferenceLammel, S., Hetzel, A., Hackel, O., Jones, I., Liss, B. & Roeper, J. ( 2008 ) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron, 57, 760 – 773.en_US
dc.identifier.citedreferenceLammel, S., Ion, D.I., Roeper, J. & Malenka, R.C. ( 2011 ) Projection‐specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron, 70, 855 – 862.en_US
dc.identifier.citedreferenceLiss, B. & Roeper, J. ( 2008 ) Individual dopamine midbrain neurons: functional diversity and flexibility in health and disease. Brain Res. Rev., 58, 314 – 321.en_US
dc.identifier.citedreferenceLiu, Z.H., Shin, R. & Ikemoto, S. ( 2008 ) Dual role of medial A10 dopamine neurons in affective encoding. Neuropsychopharmacol., 33, 3010 – 3020.en_US
dc.identifier.citedreferenceLove, G., Torrey, N., McNamara, I., Morgan, M., Banks, M., Hester, N.W., Glasper, E.R., DeVries, A.C., Kinsley, C.H. & Lambert, K.G. ( 2005 ) Maternal experience produces long‐lasting behavioral modifications in the rat. Behav. Neurosci., 119, 1084.en_US
dc.identifier.citedreferenceLynch, W.J., Arizzi, M.N. & Carroll, M.E. ( 2000 ) Effects of sex and the estrous cycle on regulation of intravenously self‐administered cocaine in rats. Psychopharmacology, 152, 132 – 139.en_US
dc.identifier.citedreferenceMahler, S.V., Smith, K.S. & Berridge, K.C. ( 2007 ) Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances ‘liking’ of a sweet reward. Neuropsychopharmacol., 32, 2267 – 2278.en_US
dc.identifier.citedreferenceMaina, F.K. & Mathews, T.A. ( 2010 ) Functional fast scan cyclic voltammetry assay to characterize dopamine D2 and D3 autoreceptors in the mouse striatum. ACS Chem. Neurosci., 1, 450 – 462.en_US
dc.identifier.citedreferenceMarcellino, D., Kehr, J., Agnati, L.F. & Fuxe, K. ( 2012 ) Increased affinity of dopamine for D2‐like versus D1‐like receptors. Relevance for volume transmission in interpreting PET findings. Synapse, 66, 196 – 203.en_US
dc.identifier.citedreferenceMatsumoto, M. & Hikosaka, O. ( 2009 ) Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature, 459, 837 – 841.en_US
dc.identifier.citedreferenceMcCutcheon, J.E., Ebner, S.R., Loriaux, A.L. & Roitman, M.F. ( 2012 ) Encoding of aversion by dopamine and the nucleus accumbens. Front. Neurosci., 6, 137.en_US
dc.identifier.citedreferenceMcGregor, A. & Roberts, D. ( 1993 ) Dopaminergic antagonism within the nucleus accumbens or the amygdala produces differential effects on intravenous cocaine self‐administration under fixed and progressive ratio schedules of reinforcement. Brain Res., 624, 245 – 252.en_US
dc.identifier.citedreferenceMeredith, G.E., Baldo, B.A., Andrezjewski, M.E. & Kelley, A.E. ( 2008 ) The structural basis for mapping behavior onto the ventral striatum and its subdivisions. Brain Struct. Funct., 213, 17 – 27.en_US
dc.identifier.citedreferenceMiller, N.E. & Stevenson, S.S. ( 1936 ) Agitated behavior of rats during experimental extinction and a curve of spontaneous recovery. J. Comp. Psychol., 21, 205.en_US
dc.identifier.citedreferenceMoreno, M., Economidou, D., Mar, A.C., Lopez‐Granero, C., Caprioli, D., Theobald, D.E., Fernando, A., Newman, A.H., Robbins, T.W. & Dalley, J.W. ( 2013 ) Divergent effects of D(2/3) receptor activation in the nucleus accumbens core and shell on impulsivity and locomotor activity in high and low impulsive rats. Psychopharmacology, doi: 10.1007/s00213‐013‐3010‐3 [Epub ahead of print].en_US
dc.identifier.citedreferenceNicola, S.M. ( 2007 ) The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology, 191, 521 – 550.en_US
dc.identifier.citedreferenceO'Connor, J.J. & Lowry, J.P. ( 2012 ) A comparison of the effects of the dopamine partial agonists aripiprazole and (−)‐3‐PPP with quinpirole on stimulated dopamine release in the rat striatum: studies using fast cyclic voltammetry in vitro. Eur. J. Pharmacol., 686, 60 – 65.en_US
dc.identifier.citedreferenceOleson, E.B., Gentry, R.N., Chioma, V.C. & Cheer, J.F. ( 2012 ) Subsecond dopamine release in the nucleus accumbens predicts conditioned punishment and its successful avoidance. J. Neurosci., 32, 14804 – 14808.en_US
dc.identifier.citedreferenceOwesson‐White, C.A., Roitman, M.F., Sombers, L.A., Belle, A.M., Keithley, R.B., Peele, J.L., Carelli, R.M. & Wightman, R.M. ( 2012 ) Sources contributing to the average extracellular concentration of dopamine in the nucleus accumbens. J. Neurochem., 121, 252 – 262.en_US
dc.identifier.citedreferencePan, W.X., Schmidt, R., Wickens, J.R. & Hyland, B.I. ( 2005 ) Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward‐learning network. J. Neurosci., 25, 6235 – 6242.en_US
dc.identifier.citedreferencePan, W.X., Schmidt, R., Wickens, J.R. & Hyland, B.I. ( 2008 ) Tripartite mechanism of extinction suggested by dopamine neuron activity and temporal difference model. J. Neurosci., 28, 9619 – 9631.en_US
dc.identifier.citedreferencePapini, M.R. & Dudley, R.T. ( 1997 ) Consequences of surprising reward omissions. Rev. Gen. Psychol., 1, 175.en_US
dc.identifier.citedreferencePaulson, P., Camp, D. & Robinson, T. ( 1991 ) Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology, 103, 480 – 492.en_US
dc.identifier.citedreferencePawluski, J.L., Walker, S.K. & Galea, L.A.M. ( 2006 ) Reproductive experience differentially affects spatial reference and working memory performance in the mother. Horm. Behav., 49, 143 – 149.en_US
dc.identifier.citedreferencePaxinos, G. & Watson, C. ( 1998 ) The Rat Brain in Stereotaxic Coordinates. Academic Press, San Diego.en_US
dc.identifier.citedreferencePezze, M.A., Dalley, J.W. & Robbins, T.W. ( 2007 ) Differential roles of dopamine D1 and D2 receptors in the nucleus accumbens in attentional performance on the five‐choice serial reaction time task. Neuropsychopharmacol., 32, 273 – 283.en_US
dc.identifier.citedreferencePhillips, G.D., Howes, S.R., Whitelaw, R.B., Everitt, B.J. & Robbins, T. ( 1995 ) Analysis of the effects of intra‐accumbens SKF‐38393 and LY‐171555 upon the behavioural satiety sequence. Psychopharmacology, 117, 82 – 90.en_US
dc.identifier.citedreferencePhillips, P.E., Walton, M.E. & Jhou, T.C. ( 2007 ) Calculating utility: preclinical evidence for cost–benefit analysis by mesolimbic dopamine. Psychopharmacology, 191, 483 – 495.en_US
dc.identifier.citedreferencePierce, R.C. & Kalivas, P.W. ( 1995 ) Amphetamine produces sensitized increases in locomotion and extracellular dopamine preferentially in the nucleus accumbens shell of rats administered repeated cocaine. J. Pharmacol. Exp. Ther., 275, 1019 – 1029.en_US
dc.identifier.citedreferencePierce, R.C., Duffy, P. & Kalivas, P.W. ( 1995 ) Sensitization to cocaine and dopamine autoreceptor subsensitivity in the nucleus accumbens. Synapse, 20, 33 – 36.en_US
dc.identifier.citedreferencePulvirenti, L., Berrier, R., Kreifeldt, M. & Koob, G.K. ( 1994 ) Modulation of locomotor activity by NMDA receptors in the nucleus accumbens core and shell regions of the rat. Brain Res., 664, 231 – 236.en_US
dc.identifier.citedreferencePurgert, R.J., Wheeler, D.S., McDannald, M.A. & Holland, P.C. ( 2012 ) Role of amygdala central nucleus in aversive learning produced by shock or by unexpected omission of food. J. Neurosci., 32, 2461 – 2472.en_US
dc.identifier.citedreferencePyke, G. ( 1984 ) Optimal foraging theory: a critical review. Annu. Rev. Ecol. Syst., 15, 523 – 575.en_US
dc.identifier.citedreferenceRamot, A. & Akirav, I. ( 2012 ) Cannabinoid receptors activation and glucocorticoid receptors deactivation in the amygdala prevent the stress‐induced enhancement of a negative learning experience. Neurobiol. Learn. Mem., 97, 393 – 401.en_US
dc.identifier.citedreferenceRanaldi, R. & Beninger, R.J. ( 1994 ) The effects of systemic and intracerebral injections of D1 and D2 agonists on brain stimulation reward. Brain Res., 651, 283 – 292.en_US
dc.identifier.citedreferenceReading, P.J. & Dunnett, S.B. ( 1991 ) The effects of excitotoxic lesions of the nucleus accumbens on a matching to position task. Behav. Brain Res., 46, 17 – 29.en_US
dc.identifier.citedreferenceReynolds, S.M. & Berridge, K.C. ( 2008 ) Emotional environments retune the valence of appetitive versus fearful functions in nucleus accumbens. Nat. Neurosci., 11, 423 – 425.en_US
dc.identifier.citedreferenceRichard, J.M. & Berridge, K.C. ( 2011 ) Nucleus accumbens dopamine/glutamate interaction switches modes to generate desire versus dread: D1 alone for appetitive eating but D1 and D2 together for fear. J. Neurosci., 31, 12866 – 12879.en_US
dc.identifier.citedreferenceRichfield, E.K., Penney, J.B. & Young, A.B. ( 1989 ) Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience, 30, 767 – 777.en_US
dc.identifier.citedreferenceRobinson, T.E. & Camp, D.M. ( 1987 ) Long‐lasting effects of escalating doses of d ‐amphetamine on brain monoamines, amphetamine‐induced stereotyped behavior and spontaneous nocturnal locomotion. Pharmacol. Biochem. Be., 26, 821 – 827.en_US
dc.identifier.citedreferenceRoesch, M.R., Calu, D.J. & Schoenbaum, G. ( 2007 ) Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nat. Neurosci., 10, 1615 – 1624.en_US
dc.identifier.citedreferenceSalamone, J.D. & Correa, M. ( 2012 ) The mysterious motivational functions of mesolimbic dopamine. Neuron, 76, 470 – 485.en_US
dc.identifier.citedreferenceSalamone, J.D., Cousins, M.S. & Bucher, S. ( 1994 ) Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T‐maze cost/benefit procedure. Behav. Brain Res., 65, 221 – 229.en_US
dc.identifier.citedreferenceSalinas, J.A. & Gold, P.E. ( 2005 ) Glucose regulation of memory for reward reduction in young and aged rats. Neurobiol. Aging, 26, 45 – 52.en_US
dc.identifier.citedreferenceSalinas, J.A. & White, N.M. ( 1998 ) Contributions of the hippocampus, amygdala, and dorsal striatum to the response elicited by reward reduction. Behav. Neurosci., 112, 812.en_US
dc.identifier.citedreferenceSalinas, J.A., Packard, M.G. & McGaugh, J.L. ( 1993 ) Amygdala modulates memory for changes in reward magnitude ‐ reversible post‐training inactivation with lidocaine attenuates the response to a reduction in reward. Behav. Brain Res., 59, 153 – 159.en_US
dc.identifier.citedreferenceSalinas, J.A., Williams, C.L. & McGaugh, J.L. ( 1996 ) Peripheral post‐training administration of 4‐OH amphetamine enhances retention of a reduction in reward magnitude. Neurobiol. Learn. Mem., 65, 192 – 195.en_US
dc.identifier.citedreferenceSalinas, J.A., Introini‐Collison, I.B., Dalmaz, C. & McGaugh, J.L. ( 1997 ) Posttraining intraamygdala infusions of oxotremorine and propranolol modulate storage of memory for reductions in reward magnitude. Neurobiol. Learn. Mem., 68, 51 – 59.en_US
dc.identifier.citedreferenceSam, P.M. & Justice, J.B. Jr. ( 1996 ) Effect of general microdialysis‐induced depletion on extracellular dopamine. Anal. Chem., 68, 724 – 728.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.