Show simple item record

Extracellular matrix determinants and the regulation of cancer cell invasion stratagems

dc.contributor.authorWillis, A.l.en_US
dc.contributor.authorSabeh, F.en_US
dc.contributor.authorLi, X.‐y.en_US
dc.contributor.authorWeiss, S.j.en_US
dc.date.accessioned2013-09-04T17:18:33Z
dc.date.available2014-10-06T19:17:42Zen_US
dc.date.issued2013-09en_US
dc.identifier.citationWillis, A.l. ; Sabeh, F. ; Li, X.‐y. ; Weiss, S.j. (2013). "Extracellular matrix determinants and the regulation of cancer cell invasion stratagems." Journal of Microscopy 251(3): 250-260. <http://hdl.handle.net/2027.42/99646>en_US
dc.identifier.issn0022-2720en_US
dc.identifier.issn1365-2818en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99646
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherInvasionen_US
dc.subject.otherMT1‐MMPen_US
dc.subject.otherExtracellular Matrix (ECM)en_US
dc.titleExtracellular matrix determinants and the regulation of cancer cell invasion stratagemsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23924043en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99646/1/jmi12064.pdf
dc.identifier.doi10.1111/jmi.12064en_US
dc.identifier.sourceJournal of Microscopyen_US
dc.identifier.citedreferenceSander, E.A., Stylianopoulos, T., Tranquillo, R.T. & Barocas, V.H. ( 2009 ) Image‐based multiscale modeling predicts tissue‐level and network‐level fiber reorganization in stretched cell‐compacted collagen gels. Proc. Natl. Acad. Sci. USA 106, 17675 – 17680.en_US
dc.identifier.citedreferenceWang, Y. & McNiven, M.A. ( 2012 ) Invasive matrix degradation at focal adhesions occurs via protease recruitment by a FAK‐p130Cas complex. J. Cell Biol. 196, 375 – 385.en_US
dc.identifier.citedreferenceWeigelin, B., Bakker, G.‐J. & Friedl P. ( 2012 ) Intravital third harmonic generation microscopy of collective melanoma cell invasion: principles of interface guidance and microvesicle dynamics. IntraVital 1, 32 – 43.en_US
dc.identifier.citedreferenceWeiss, S.J. ( 2012 ) Peroxidasin: tying the collagen‐sulfilimine knot. Nat. Chem. Biol. 8, 740 – 741.en_US
dc.identifier.citedreferenceWiner, J.P., Oake, S. & Janmey, P.A. ( 2009 ) Non‐linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation. PLoS One 4, e6382.en_US
dc.identifier.citedreferenceWolf, K., Alexander, S., Schacht, V., Coussens, L.M., von Andrian, U.H., van Rheenen, J., Deryugina, E. & Friedl, P. ( 2009 ) Collagen‐based cell migration models in vitro and in vivo. Semin. Cell Dev. Biol. 20, 931 – 941.en_US
dc.identifier.citedreferenceWolf, K., Mazo, I., Leung, H., et al. ( 2003 ) Compensation mechanism in tumor cell migration: mesenchymal‐amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267 – 277.en_US
dc.identifier.citedreferenceWolf, K., te Lindert, M., Krause, M., et al. ( 2013 ) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069 – 1084.en_US
dc.identifier.citedreferenceWolf, K., Wu, Y.I., Liu, Y., Geiger, J., Tam, E., Overall, C., Stack, M.S. & Friedl, P. ( 2007 ) Multi‐step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9, 893 – 904.en_US
dc.identifier.citedreferenceWoodley, D.T., Yamauchi, M., Wynn, K.C., Mechanic, G. & Briggaman, R.A. ( 1991 ) Collagen telopeptides (cross‐linking sites) play a role in collagen gel lattice contraction. J. Invest. Dermatol. 97, 580 – 585.en_US
dc.identifier.citedreferenceWu, X., Gan, B., Yoo, Y. & Guan, J.L. ( 2005 ) FAK‐mediated src phosphorylation of endophilin A2 inhibits endocytosis of MT1‐MMP and promotes ECM degradation. Dev. Cell 9, 185 – 196.en_US
dc.identifier.citedreferenceXiong, W., Knispel, R., MacTaggart, J., Greiner, T.C., Weiss, S.J. & Baxter, B.T. ( 2009 ) Membrane‐type 1 matrix metalloproteinase regulates macrophage‐dependent elastolytic activity and aneurysm formation in vivo. J. Biol. Chem. 284, 1765 – 1771.en_US
dc.identifier.citedreferenceYamada, K.M. & Cukierman, E. ( 2007 ) Modeling tissue morphogenesis and cancer in 3D. Cell 130, 601 – 610.en_US
dc.identifier.citedreferenceYang, Y.L., Motte, S. & Kaufman, L.J. ( 2010 ) Pore size variable type I collagen gels and their interaction with glioma cells. Biomaterials 31, 5678 – 5688.en_US
dc.identifier.citedreferenceYasunaga, K., Kanamori, T., Morikawa, R., Suzuki, E. & Emoto, K. ( 2010 ) Dendrite reshaping of adult Drosophila sensory neurons requires matrix metalloproteinase‐mediated modification of the basement membranes. Dev. Cell 18, 621 – 632.en_US
dc.identifier.citedreferenceYu, X., Zech, T., McDonald, L., et al. ( 2012 ) N‐WASP coordinates the delivery and F‐actin‐mediated capture of MT1‐MMP at invasive pseudopods. J. Cell Biol. 199, 527 – 544.en_US
dc.identifier.citedreferenceYurchenco, P.D. ( 2011 ) Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb. Perspect. Biol. 3, a004911.en_US
dc.identifier.citedreferenceYurchenco, P.D., Cheng, Y.S. & Colognato, H. ( 1992 ) Laminin forms an independent network in basement membranes. J. Cell Biol. 117, 1119 – 1133.en_US
dc.identifier.citedreferenceYurchenco, P.D. & Ruben, G.C. ( 1987 ) Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network. J. Cell Biol. 105, 2559 – 2568.en_US
dc.identifier.citedreferenceZaman, M.H., Trapani, L.M., Sieminski, A.L., et al. ( 2006 ) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell‐matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. USA 103, 10889 – 10894.en_US
dc.identifier.citedreferenceWolf, K. & Friedl, P. ( 2011 ) Extracellular matrix determinants of proteolytic and non‐proteolytic cell migration. Trends Cell Biol. 21, 736 – 744.en_US
dc.identifier.citedreferenceAbrams, G.A., Goodman, S.L., Nealey, P.F., Franco, M. & Murphy, C.J. ( 2000 ) Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res. 299, 39 – 46.en_US
dc.identifier.citedreferenceauf dem Keller, U., Prudova, A., Eckhard, U., Fingleton, B. & Overall, C.M. ( 2013 ) Systems‐level analysis of proteolytic events in increased vascular permeability and complement activation in skin inflammation. Sci. Signal 6, rs2.en_US
dc.identifier.citedreferenceBai, X., Dilworth, D.J., Weng, Y.C. & Gould, D.B. ( 2009 ) Developmental distribution of collagen IV isoforms and relevance to ocular diseases. Matrix Biol. 28, 194 – 201.en_US
dc.identifier.citedreferenceBailey, J.L., Critser, P.J., Whittington, C., Kuske, J.L., Yoder, M.C. & Voytik‐Harbin, S.L. ( 2011 ) Collagen oligomers modulate physical and biological properties of three‐dimensional self‐assembled matrices. Biopolymers 95, 77 – 93.en_US
dc.identifier.citedreferenceBalasubramani, M., Schreiber, E.M., Candiello, J., Balasubramani, G.K., Kurtz, J. & Halfter, W. ( 2010 ) Molecular interactions in the retinal basement membrane system: a proteomic approach. Matrix Biol. 29, 471 – 483.en_US
dc.identifier.citedreferenceBalzer, E.M., Tong, Z., Paul, C.D., Hung, W.C., Stroka, K.M., Boggs, A.E., Martin, S.S. & Konstantopoulos, K. ( 2012 ) Physical confinement alters tumor cell adhesion and migration phenotypes. FASEB J. 26, 4045 – 4056.en_US
dc.identifier.citedreferenceBarbolina, M.V. & Stack, M.S. ( 2008 ) Membrane type 1‐matrix metalloproteinase: substrate diversity in pericellular proteolysis. Semin. Cell Dev. Biol. 19, 24 – 33.en_US
dc.identifier.citedreferenceNurmenniemi, S., Sinikumpu, T., Alahuhta, I., et al. ( 2009 ) A novel organotypic model mimics the tumor microenvironment. Am. J. Pathol. 175, 1281 – 1291.en_US
dc.identifier.citedreferenceBeadle, C., Assanah, M.C., Monzo, P., Vallee, R., Rosenfeld, S.S. & Canoll, P. ( 2008 ) The role of myosin II in glioma invasion of the brain. Mol. Biol. Cell 19, 3357 – 3368.en_US
dc.identifier.citedreferenceBhave, G., Cummings, C.F., Vanacore, R.M., et al. ( 2012 ) Peroxidasin forms sulfilimine chemical bonds using hypohalous acids in tissue genesis. Nat. Chem. Biol. 8, 784 – 790.en_US
dc.identifier.citedreferenceBooth, A.J., Hadley, R., Cornett, A.M., et al. ( 2012 ) Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am. J. Respiratory and Critical Care Med. 186, 866 – 876.en_US
dc.identifier.citedreferenceCandiello, J., Balasubramani, M., Schreiber, E.M., Cole, G.J., Mayer, U., Halfter, W. & Lin, H. ( 2007 ) Biomechanical properties of native basement membranes. FEBS J. 274, 2897 – 2908.en_US
dc.identifier.citedreferenceCandiello, J., Cole, G.J. & Halfter, W. ( 2010 ) Age‐dependent changes in the structure, composition and biophysical properties of a human basement membrane. Matrix Biol. 29, 402 – 410.en_US
dc.identifier.citedreferenceCarey, S.P., Kraning‐Rush, C.M., Williams, R.M. & Reinhart‐King, C.A. ( 2012 ) Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials 33, 4157 – 4165.en_US
dc.identifier.citedreferenceCarey, S.P., Starchenko, A., McGregor, A.L. & Reinhart‐King, C.A. ( 2013 ) Leading malignant cells initiate collective epithelial cell invasion in a three‐dimensional heterotypic tumor spheroid model. Clin. Exp. Metastasis 30, 615 – 630.en_US
dc.identifier.citedreferenceChristiansen, D.L., Huang, E.K. & Silver, F.H. ( 2000 ) Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biol. 19, 409 – 420.en_US
dc.identifier.citedreferenceChun, T.H., Hotary, K.B., Sabeh, F., Saltiel, A.R., Allen, E.D. & Weiss, S.J. ( 2006 ) A pericellular collagenase directs the 3‐dimensional development of white adipose tissue. Cell 125, 577 – 591.en_US
dc.identifier.citedreferenceConklin, M.W., Eickhoff, J.C., Riching, K.M., Pehlke, C.A., Eliceiri, K.W., Provenzano, P.P., Friedl, A. & Keely, P.J. ( 2011 ) Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 178, 1221 – 1232.en_US
dc.identifier.citedreferenceCurino, A.C., Engelholm, L.H., Yamada, S.S., et al. ( 2005 ) Intracellular collagen degradation mediated by uPARAP/Endo180 is a major pathway of extracellular matrix turnover during malignancy. J. Cell Biol. 169, 977 – 985.en_US
dc.identifier.citedreferenceDemou, Z.N., Awad, M., McKee, T., Perentes, J.Y., Wang, X., Munn, L.L., Jain, R.K. & Boucher, Y. ( 2005 ) Lack of telopeptides in fibrillar collagen I promotes the invasion of a metastatic breast tumor cell line. Cancer Res. 65, 5674 – 5682.en_US
dc.identifier.citedreferenceDevy, L., Huang, L., Naa, L., et al. ( 2009 ) Selective inhibition of matrix metalloproteinase‐14 blocks tumor growth, invasion, and angiogenesis. Cancer Res. 69, 1517 – 1526.en_US
dc.identifier.citedreferenceDewitt, D.D., Kaszuba, S.N., Thompson, D.M. & Stegemann, J.P. ( 2009 ) Collagen I‐matrigel scaffolds for enhanced Schwann cell survival and control of three‐dimensional cell morphology. Tissue Eng. Part A 15, 2785 – 2793.en_US
dc.identifier.citedreferenceDischer, D.E., Janmey, P. & Wang, Y.L. ( 2005 ) Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139 – 1143.en_US
dc.identifier.citedreferenceDufour, A., Sampson, N.S., Li, J., et al. ( 2011 ) Small‐molecule anticancer compounds selectively target the hemopexin domain of matrix metalloproteinase‐9. Cancer Res. 71, 4977 – 4988.en_US
dc.identifier.citedreferenceEhrbar, M., Sala, A., Lienemann, P., et al. ( 2011 ) Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophys. J. 100, 284 – 293.en_US
dc.identifier.citedreferenceEven‐Ram, S. & Yamada, K.M. ( 2005 ) Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17, 524 – 532.en_US
dc.identifier.citedreferenceEyre, D.R., Paz, M.A. & Gallop, P.M. ( 1984 ) Cross‐linking in collagen and elastin. Annu. Rev. Biochem. 53, 717 – 748.en_US
dc.identifier.citedreferenceFackler, O.T. & Grosse, R. ( 2008 ) Cell motility through plasma membrane blebbing. J. Cell Biol. 181, 879 – 884.en_US
dc.identifier.citedreferenceFilippov, S., Koenig, G.C., Chun, T.H., et al. ( 2005 ) MT1‐matrix metalloproteinase directs arterial wall invasion and neointima formation by vascular smooth muscle cells. J. Exp. Med. 202, 663 – 671.en_US
dc.identifier.citedreferenceFisher, K.E., Sacharidou, A., Stratman, A.N., Mayo, A.M., Fisher, S.B., Mahan, R.D., Davis, M.J. & Davis, G.E. ( 2009 ) MT1‐MMP‐ and Cdc42‐dependent signaling co‐regulate cell invasion and tunnel formation in 3D collagen matrices. J. Cell Sci. 122, 4558 – 4569.en_US
dc.identifier.citedreferenceFriedl, P., Sahai, E., Weiss, S. & Yamada, K.M. ( 2012 ) New dimensions in cell migration. Nat. Rev. Mol. Cell Biol. 13, 743 – 747.en_US
dc.identifier.citedreferenceFriedl, P., Wolf, K. & Lammerding, J. ( 2011 ) Nuclear mechanics during cell migration. Curr. Opin. Cell Biol. 23, 55 – 64.en_US
dc.identifier.citedreferenceFriedrichs, J., Taubenberger, A., Franz, C.M. & Muller, D.J. ( 2007 ) Cellular remodelling of individual collagen fibrils visualized by time‐lapse AFM. J. Mol. Biol. 372, 594 – 607.en_US
dc.identifier.citedreferenceGadea, G., de Toledo, M., Anguille, C. & Roux, P. ( 2007 ) Loss of p53 promotes RhoA‐ROCK‐dependent cell migration and invasion in 3D matrices. J. Cell Biol. 178, 23 – 30.en_US
dc.identifier.citedreferenceGaggioli, C., Hooper, S., Hidalgo‐Carcedo, C., Grosse, R., Marshall, J.F., Harrington, K. & Sahai, E. ( 2007 ) Fibroblast‐led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9, 1392 – 1400.en_US
dc.identifier.citedreferenceGolubkov, V.S., Chernov, A.V. & Strongin, A.Y. ( 2011 ) Intradomain cleavage of inhibitory prodomain is essential to protumorigenic function of membrane type‐1 matrix metalloproteinase (MT1‐MMP) in vivo. J. Biol. Chem. 286, 34215 – 34223.en_US
dc.identifier.citedreferenceGrinnell, F. & Petroll, W.M. ( 2010 ) Cell motility and mechanics in three‐dimensional collagen matrices. Annu. Rev. Cell Dev. Biol. 26, 335 – 361.en_US
dc.identifier.citedreferenceHagedorn, E.J. & Sherwood, D.R. ( 2011 ) Cell invasion through basement membrane: the anchor cell breaches the barrier. Curr. Opin. Cell Biol. 23, 589 – 596.en_US
dc.identifier.citedreferenceHotary, K., Li, X.Y., Allen, E., Stevens, S.L. & Weiss, S.J. ( 2006 ) A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes Dev. 20, 2673 – 2686.en_US
dc.identifier.citedreferenceHotary, K.B., Allen, E.D., Brooks, P.C., Datta, N.S., Long, M.W. & Weiss, S.J. ( 2003 ) Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three‐dimensional extracellular matrix. Cell 114, 33 – 45.en_US
dc.identifier.citedreferenceHuber, A.R. & Weiss, S.J. ( 1989 ) Disruption of the subendothelial basement membrane during neutrophil diapedesis in an in vitro construct of a blood vessel wall. J. Clin. Invest. 83, 1122 – 1136.en_US
dc.identifier.citedreferenceIlani, T., Alon, A., Grossman, I., Horowitz, B., Kartvelishvily, E., Cohen, S.R. & Fass, D. ( 2013 ) A secreted disulfide catalyst controls extracellular matrix composition and function. Science 341, 74 – 76.en_US
dc.identifier.citedreferenceJawerth, L.M., Munster, S., Vader, D.A., Fabry, B. & Weitz, D.A. ( 2010 ) A blind spot in confocal reflection microscopy: the dependence of fiber brightness on fiber orientation in imaging biopolymer networks. Biophys. J. 98, L1 – 3.en_US
dc.identifier.citedreferenceJiang, S.T., Liao, K.K., Liao, M.C. & Tang, M.J. ( 2000 ) Age effect of type I collagen on morphogenesis of Mardin‐Darby canine kidney cells. Kidney Int. 57, 1539 – 1548.en_US
dc.identifier.citedreferenceKabosova, A., Azar, D.T., Bannikov, G.A., et al. ( 2007 ) Compositional differences between infant and adult human corneal basement membranes. Invest. Ophthalmol. Vis. Sci. 48, 4989 – 4999.en_US
dc.identifier.citedreferenceKadler, K.E., Hill, A. & Canty‐Laird, E.G. ( 2008 ) Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr. Opin. Cell Biol. 20, 495 – 501.en_US
dc.identifier.citedreferenceKessenbrock, K., Plaks, V. & Werb, Z. ( 2010 ) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52 – 67.en_US
dc.identifier.citedreferenceKhatau, S.B., Bloom, R.J., Bajpai, S., et al. ( 2012 ) The distinct roles of the nucleus and nucleus‐cytoskeleton connections in three‐dimensional cell migration. Sci. Rep. 2, 488.en_US
dc.identifier.citedreferenceKlose, A., Zigrino, P. & Mauch, C. ( 2013 ) Monocyte/macrophage MMP‐14 modulates cell infiltration and T‐cell attraction in contact dermatitis but not in murine wound healing. Am. J. Pathol. 182, 755 – 764.en_US
dc.identifier.citedreferenceKreger, S.T., Bell, B.J., Bailey, J., Stites, E., Kuske, J., Waisner, B. & Voytik‐Harbin, S.L. ( 2010 ) Polymerization and matrix physical properties as important design considerations for soluble collagen formulations. Biopolymers 93, 690 – 707.en_US
dc.identifier.citedreferenceKuznetsova, N. & Leikin, S. ( 1999 ) Does the triple helical domain of type I collagen encode molecular recognition and fiber assembly while telopeptides serve as catalytic domains? Effect of proteolytic cleavage on fibrillogenesis and on collagen‐collagen interaction in fibers. J. Biol. Chem. 274, 36083 – 36088.en_US
dc.identifier.citedreferenceLammermann, T., Bader, B.L., Monkley, S.J., et al. ( 2008 ) Rapid leukocyte migration by integrin‐independent flowing and squeezing. Nature 453, 51 – 55.en_US
dc.identifier.citedreferenceLevental, K. R., Yu, H., Kass, L., et al. ( 2009 ) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891 – 906.en_US
dc.identifier.citedreferenceLu, C., Li, X.Y., Hu, Y., Rowe, R.G. & Weiss, S.J. ( 2010 ) MT1‐MMP controls human mesenchymal stem cell trafficking and differentiation. Blood 115, 221 – 229.en_US
dc.identifier.citedreferenceLu, P., Weaver, V.M. & Werb, Z. ( 2012 ) The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395 – 406.en_US
dc.identifier.citedreferenceMa, X., Schickel, M.E., Stevenson, M.D., Sarang‐Sieminski, A.L., Gooch, K.J., Ghadiali, S.N. & Hart, R.T. ( 2013 ) Fibers in the extracellular matrix enable long‐range stress transmission between cells. Biophys. J. 104, 1410 – 1418.en_US
dc.identifier.citedreferenceMadsen, C.D. & Sahai, E. ( 2010 ) Cancer dissemination–lessons from leukocytes. Dev. Cell. 19, 13 – 26.en_US
dc.identifier.citedreferenceMatus, D.Q., Li, X.Y., Durbin, S., Agarwal, D., Chi, Q., Weiss, S.J. & Sherwood, D.R. ( 2010 ) In vivo identification of regulators of cell invasion across basement membranes. Sci. Signal. 3, ra35.en_US
dc.identifier.citedreferenceMickel, W., Munster, S., Jawerth, L.M., et al. ( 2008 ) Robust pore size analysis of filamentous networks from three‐dimensional confocal microscopy. Biophys. J. 95, 6072 – 6080.en_US
dc.identifier.citedreferenceMorell, M., Nguyen Duc, T., Willis, A., et al. ( 2013 ) Coupling Protein Engineering with Probe Design To Inhibit and Image Matrix Metalloproteinases with Controlled Specificity. J. Am. Chem. Soc. 135, 9139 – 9148.en_US
dc.identifier.citedreferenceNakayama, M., Amano, M., Katsumi, A., Kaneko, T., Kawabata, S., Takefuji, M. & Kaibuchi, K. ( 2005 ) Rho‐kinase and myosin II activities are required for cell type and environment specific migration. Genes Cells 10, 107 – 117.en_US
dc.identifier.citedreferenceNguyen‐Ngoc, K.V. & Ewald, A.J. ( 2013 ) Mammary ductal elongation and myoepithelial migration are regulated by the composition of the extracellular matrix. J. Microsc. 251, 212 – 223.en_US
dc.identifier.citedreferenceOldberg, A., Kalamajski, S., Salnikov, A.V., Stuhr, L., Morgelin, M., Reed, R.K., Heldin, N.E. & Rubin, K. ( 2007 ) Collagen‐binding proteoglycan fibromodulin can determine stroma matrix structure and fluid balance in experimental carcinoma. Proc. Natl. Acad. Sci. USA 104, 13966 – 13971.en_US
dc.identifier.citedreferenceOlins, A.L., Hoang, T.V., Zwerger, M., et al. ( 2009 ) The LINC‐less granulocyte nucleus. Eur. J. Cell Biol. 88, 203 – 214.en_US
dc.identifier.citedreferenceOta, I., Li, X.Y., Hu, Y. & Weiss, S.J. ( 2009 ) Induction of a MT1‐MMP and MT2‐MMP‐dependent basement membrane transmigration program in cancer cells by Snail1. Proc. Natl. Acad. Sci. USA 106, 20318 – 20323.en_US
dc.identifier.citedreferencePackard, B.Z., Artym, V.V., Komoriya, A. & Yamada, K.M. ( 2009 ) Direct visualization of protease activity on cells migrating in three‐dimensions. Matrix Biol. 28, 3 – 10.en_US
dc.identifier.citedreferencePage‐McCaw, A. ( 2008 ) Remodeling the model organism: matrix metalloproteinase functions in invertebrates. Semin. Cell Dev. Biol. 19, 14 – 23.en_US
dc.identifier.citedreferencePathak, A. & Kumar, S. ( 2012 ) Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl. Acad. Sci. USA 109, 10334 – 10339.en_US
dc.identifier.citedreferencePerentes, J.Y., Kirkpatrick, N.D., Nagano, S., et al. ( 2011 ) Cancer cell‐associated MT1‐MMP promotes blood vessel invasion and distant metastasis in triple‐negative mammary tumors. Cancer Res. 71, 4527 – 4538.en_US
dc.identifier.citedreferencePerumal, S., Antipova, O. & Orgel, J.P. ( 2008 ) Collagen fibril architecture, domain organization, and triple‐helical conformation govern its proteolysis. Proc. Natl. Acad. Sci. USA 105, 2824 – 2829.en_US
dc.identifier.citedreferencePetrie, R.J., Gavara, N., Chadwick, R.S. & Yamada, K.M. ( 2012 ) Nonpolarized signaling reveals two distinct modes of 3D cell migration. J. Cell Biol. 197, 439 – 455.en_US
dc.identifier.citedreferencePflicke, H. & Sixt, M. ( 2009 ) Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J. Exp. Med. 206, 2925 – 2935.en_US
dc.identifier.citedreferencePoincloux, R., Collin, O., Lizarraga, F., Romao, M., Debray, M., Piel, M. & Chavrier, P. ( 2011 ) Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel. Proc. Natl. Acad. Sci. USA 108, 1943 – 1948.en_US
dc.identifier.citedreferencePoincloux, R., Lizarraga, F. & Chavrier, P. ( 2009 ) Matrix invasion by tumour cells: a focus on MT1‐MMP trafficking to invadopodia. J. Cell Sci. 122, 3015 – 3024.en_US
dc.identifier.citedreferenceProvenzano, P.P., Eliceiri, K.W. & Keely, P.J. ( 2009 ) Shining new light on 3D cell motility and the metastatic process. Trends Cell Biol. 19, 638 – 648.en_US
dc.identifier.citedreferenceRao, S.S., Bentil, S., DeJesus, J., Larison, J., Hissong, A., Dupaix, R., Sarkar, A. & Winter, J.O. ( 2012 ) Inherent interfacial mechanical gradients in 3D hydrogels influence tumor cell behaviors. PLoS One 7, e35852.en_US
dc.identifier.citedreferenceRaub, C.B., Suresh, V., Krasieva, T., Lyubovitsky, J., Mih, J.D., Putnam, A.J., Tromberg, B.J. & George, S.C. ( 2007 ) Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophys. J. 92, 2212 – 2222.en_US
dc.identifier.citedreferenceRaub, C.B., Unruh, J., Suresh, V., Krasieva, T., Lindmo, T., Gratton, E., Tromberg, B.J. & George, S.C. ( 2008 ) Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties. Biophys. J. 94, 2361 – 2373.en_US
dc.identifier.citedreferenceRebustini, I.T., Myers, C., Lassiter, K.S., et al. ( 2009 ) MT2‐MMP‐dependent release of collagen IV NC1 domains regulates submandibular gland branching morphogenesis. Dev. Cell 17, 482 – 493.en_US
dc.identifier.citedreferenceRiggins, K. S., Mernaugh, G., Su, Y., Quaranta, V., Koshikawa, N., Seiki, M., Pozzi, A. & Zent, R. ( 2010 ) MT1‐MMP‐mediated basement membrane remodeling modulates renal development. Exp. Cell Res. 316, 2993 – 3005.en_US
dc.identifier.citedreferenceRizki, A., Weaver, V.M., Lee, S.Y., et al. ( 2008 ) A human breast cell model of preinvasive to invasive transition. Cancer Res. 68, 1378 – 1387.en_US
dc.identifier.citedreferenceRolli, C.G., Seufferlein, T., Kemkemer, R. & Spatz, J.P. ( 2010 ) Impact of tumor cell cytoskeleton organization on invasiveness and migration: a microchannel‐based approach. PLoS One 5, e8726.en_US
dc.identifier.citedreferenceRottiers, P., Saltel, F., Daubon, T., Chaigne‐Delalande, B., Tridon, V., Billottet, C., Reuzeau, E. & Genot, E. ( 2009 ) TGFbeta‐induced endothelial podosomes mediate basement membrane collagen degradation in arterial vessels. J. Cell Sci. 122, 4311 – 4318.en_US
dc.identifier.citedreferenceRowat, A.C., Jaalouk, D.E., Zwerger, M., et al. ( 2013 ) Nuclear envelope composition determines the ability of neutrophil‐type cells to passage through micron‐scale constrictions. J. Biol. Chem. 288, 8610 – 8618.en_US
dc.identifier.citedreferenceRowe, R.G., Keena, D., Sabeh, F., Willis, A.L. & Weiss, S.J. ( 2011 ) Pulmonary fibroblasts mobilize the membrane‐tethered matrix metalloprotease, MT1‐MMP, to destructively remodel and invade interstitial type I collagen barriers. Am. J. Physiol. Lung Cell Mol. Physiol. 301, L683 – 692.en_US
dc.identifier.citedreferenceRowe, R.G. & Weiss, S.J. ( 2008 ) Breaching the basement membrane: who, when and how ? Trends Cell Biol. 18, 560 – 574.en_US
dc.identifier.citedreferenceRowe, R.G. & Weiss, S.J. ( 2009 ) Navigating ECM barriers at the invasive front: the cancer cell‐stroma interface. Annu. Rev. Cell Dev. Biol. 25, 567 – 595.en_US
dc.identifier.citedreferenceSabeh, F., Fox, D. & Weiss, S.J. ( 2010 ) Membrane‐type I matrix metalloproteinase‐dependent regulation of rheumatoid arthritis synoviocyte function. J. Immunol. 184, 6396 – 6406.en_US
dc.identifier.citedreferenceSabeh, F., Ota, I., Holmbeck, K., et al. ( 2004 ) Tumor cell traffic through the extracellular matrix is controlled by the membrane‐anchored collagenase MT1‐MMP. J. Cell Biol. 167, 769 – 781.en_US
dc.identifier.citedreferenceSabeh, F., Li, X.Y., Saunders, T.L., Rowe, R.G. & Weiss, S.J. ( 2009b ) Secreted versus membrane‐anchored collagenases: relative roles in fibroblast‐dependent collagenolysis and invasion. J. Biol. Chem. 284, 23001 – 23011.en_US
dc.identifier.citedreferenceSabeh, F., Shimizu‐Hirota, R. & Weiss, S.J. ( 2009 ) Protease‐dependent versus ‐independent cancer cell invasion programs: three‐dimensional amoeboid movement revisited. J. Cell Biol. 185, 11 – 19.en_US
dc.identifier.citedreferenceSahai, E., Garcia‐Medina, R., Pouyssegur, J. & Vial, E. ( 2007 ) Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. J. Cell Biol. 176, 35 – 42.en_US
dc.identifier.citedreferenceSakamoto, T. & Seiki, M. ( 2009 ) Cytoplasmic tail of MT1‐MMP regulates macrophage motility independently from its protease activity. Genes Cells 14, 617 – 626.en_US
dc.identifier.citedreferenceSato, K., Ebihara, T., Adachi, E., Kawashima, S., Hattori, S. & Irie, S. ( 2000 ) Possible involvement of aminotelopeptide in self‐assembly and thermal stability of collagen I as revealed by its removal with proteases. J. Biol. Chem. 275, 25870 – 25875.en_US
dc.identifier.citedreferenceSchoumacher, M., Goldman, R.D., Louvard, D. & Vignjevic, D.M. ( 2010 ) Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J. Cell Biol. 189, 541 – 556.en_US
dc.identifier.citedreferenceShimizu‐Hirota, R., Xiong, W., Baxter, B.T., Kunkel, S.L., Maillard, I., Chen, X.W., Sabeh, F., Liu, R., Li, X.Y. & Weiss, S.J. ( 2012 ) MT1‐MMP regulates the PI3Kdelta.Mi‐2/NuRD‐dependent control of macrophage immune function. Genes Dev. 26, 395 – 413.en_US
dc.identifier.citedreferenceSodek, K.L., Brown, T.J. & Ringuette, M.J. ( 2008 ) Collagen I but not Matrigel matrices provide an MMP‐dependent barrier to ovarian cancer cell penetration. BMC Cancer 8, 223.en_US
dc.identifier.citedreferenceSodek, K.L., Ringuette, M.J. & Brown, T.J. ( 2007 ) MT1‐MMP is the critical determinant of matrix degradation and invasion by ovarian cancer cells. Br. J. Cancer 97, 358 – 367.en_US
dc.identifier.citedreferenceSoofi, S.S., Last, J.A., Liliensiek, S.J., Nealey, P.F. & Murphy, C.J. ( 2009 ) The elastic modulus of Matrigel as determined by atomic force microscopy. J. Struct. Biol. 167, 216 – 219.en_US
dc.identifier.citedreferenceSrivastava, A., Pastor‐Pareja, J.C., Igaki, T., Pagliarini, R. & Xu, T. ( 2007 ) Basement membrane remodeling is essential for drosophila disc eversion and tumor invasion. Proc. Natl. Acad. Sci. USA 104, 2721 – 2726.en_US
dc.identifier.citedreferenceStevens, L.J. & Page‐McCaw, A. ( 2012 ) A secreted MMP is required for reepithelialization during wound healing. Mol. Biol. Cell 23, 1068 – 1079.en_US
dc.identifier.citedreferenceStratman, A.N., Saunders, W.B., Sacharidou, A., Koh, W., Fisher, K.E., Zawieja, D.C., Davis, M.J. & Davis, G.E. ( 2009 ) Endothelial cell lumen and vascular guidance tunnel formation requires MT1‐MMP‐dependent proteolysis in 3‐dimensional collagen matrices. Blood 114, 237 – 247.en_US
dc.identifier.citedreferenceStrongin, A.Y. ( 2010 ) Proteolytic and non‐proteolytic roles of membrane type‐1 matrix metalloproteinase in malignancy. Biochim. Biophys. Acta 1803, 133 – 141.en_US
dc.identifier.citedreferenceTang, Y., Rowe, R.G., Botvinick, E.L., et al. ( 2013 ) MT1‐MMP‐dependent control of skeletal stem cell commitment via a beta1‐Integrin/YAP/TAZ signaling axis. Dev. Cell 25, 402 – 416.en_US
dc.identifier.citedreferenceTilghman, R.W., Blais, E.M., Cowan, C.R., et al. ( 2012 ) Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis. PLoS One 7, e37231.en_US
dc.identifier.citedreferenceTong, Z., Balzer, E.M., Dallas, M.R., Hung, W.C., Stebe, K.J. & Konstantopoulos, K. ( 2012 ) Chemotaxis of cell populations through confined spaces at single‐cell resolution. PLoS One 7, e29211.en_US
dc.identifier.citedreferenceUeda, J., Kajita, M., Suenaga, N., Fujii, K. & Seiki, M. ( 2003 ) Sequence‐specific silencing of MT1‐MMP expression suppresses tumor cell migration and invasion: importance of MT1‐MMP as a therapeutic target for invasive tumors. Oncogene 22, 8716 – 8722.en_US
dc.identifier.citedreferenceVanacore, R., Ham, A.J., Voehler, M., et al. ( 2009 ) A sulfilimine bond identified in collagen IV. Science 325, 1230 – 1234.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.