Show simple item record

Single‐cell and population level viral infection dynamics revealed by phage FISH , a method to visualize intracellular and free viruses

dc.contributor.authorAllers, Elkeen_US
dc.contributor.authorMoraru, Cristinaen_US
dc.contributor.authorDuhaime, Melissa B.en_US
dc.contributor.authorBeneze, Ericaen_US
dc.contributor.authorSolonenko, Natalieen_US
dc.contributor.authorBarrero‐canosa, Jimenaen_US
dc.contributor.authorAmann, Rudolfen_US
dc.contributor.authorSullivan, Matthew B.en_US
dc.date.accessioned2013-09-04T17:18:36Z
dc.date.available2014-10-06T19:17:42Zen_US
dc.date.issued2013-08en_US
dc.identifier.citationAllers, Elke; Moraru, Cristina; Duhaime, Melissa B.; Beneze, Erica; Solonenko, Natalie; Barrero‐canosa, Jimena ; Amann, Rudolf; Sullivan, Matthew B. (2013). "Singleâ cell and population level viral infection dynamics revealed by phage FISH , a method to visualize intracellular and free viruses." Environmental Microbiology (8): 2306-2318. <http://hdl.handle.net/2027.42/99658>en_US
dc.identifier.issn1462-2912en_US
dc.identifier.issn1462-2920en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99658
dc.publisherInterscience Publen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleSingle‐cell and population level viral infection dynamics revealed by phage FISH , a method to visualize intracellular and free virusesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23489642en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99658/1/emi12100.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99658/2/emi12100-sup-0001-suppl.pdf
dc.identifier.doi10.1111/1462-2920.12100en_US
dc.identifier.sourceEnvironmental Microbiologyen_US
dc.identifier.citedreferenceSchermelleh, L., Heintzmann, R., and Leonhardt, H. ( 2010 ) A guide to super‐resolution fluorescence microscopy. J Cell Biol 190: 165 – 175.en_US
dc.identifier.citedreferenceRaytcheva, D.A., Haase‐Pettingell, C., Piret, J.M., and King, J.A. ( 2011 ) Intracellular assembly of cyanophage Syn5 proceeds through a scaffold‐containing procapsid. J Virol 85: 2406 – 2415.en_US
dc.identifier.citedreferenceSharon, I., Tzahor, S., Williamson, S., Shmoish, M., Man‐Aharonovich, D., Rusch, D.B., et al. ( 2007 ) Viral photosynthetic reaction center genes and transcripts in the marine environment. ISME J 1: 492 – 501.en_US
dc.identifier.citedreferenceSteward, G.F., Smith, D.C., and Azam, F. ( 1996 ) Abundance and production of bacteria and viruses in the Bering and Chukchi Seas. Mar Ecol Prog Ser 131: 287 – 300.en_US
dc.identifier.citedreferenceSullivan, M.B., Waterbury, J.B., and Chisholm, S.W. ( 2003 ) Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424: 1047 – 1051.en_US
dc.identifier.citedreferenceSullivan, M.B., Lindell, D., Lee, J.A., Thompson, L.R., Bielawski, J.P., and Chisholm, S.W. ( 2006 ) Prevalence and evolution of core Photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol 4: 1334 – 1357.en_US
dc.identifier.citedreferenceSullivan, M.B., Huang, K.H., Ignacio‐Espinoza, J.C., Berlin, A.M., Kelly, L., Weigele, P.R., et al. ( 2010 ) Genomic analysis of oceanic cyanobacterial myoviruses compared with T4‐like myoviruses from diverse hosts and environments. Environ Microbiol 12: 3035 – 3056.en_US
dc.identifier.citedreferenceSuttle, C.A. ( 2007 ) Marine viruses – major players in the global ecosystem. Nat Rev Microbiol 5: 801 – 812.en_US
dc.identifier.citedreferenceSuttle, C.A., and Chan, A.M. ( 1993 ) Marine cyanophages infecting oceanic and coastal strains of Synechococcus: abundance, morphology, cross‐infectivity and growth characteristics. Mar Ecol Prog Ser 92: 99 – 109.en_US
dc.identifier.citedreferenceTadmor, A.D., Ottesen, E.A., Leadbetter, J.R., and Phillips, R. ( 2011 ) Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science 333: 58 – 62.en_US
dc.identifier.citedreferenceWang, I.‐N., Dykhuizen, D.E., and Slobodkin, L.B. ( 1996 ) The evolution of phage lysis timing. Evol Ecol 10: 545 – 558.en_US
dc.identifier.citedreferenceWaterbury, J.B., and Valois, F.W. ( 1993 ) Resistance to co‐occurring phages enables marine Synechococcus communities to coexist with cyanophage abundant in seawater. Appl Environ Microbiol 59: 3393 – 3399.en_US
dc.identifier.citedreferenceWeinbauer, M.G. ( 2004 ) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28: 127 – 181.en_US
dc.identifier.citedreferenceWeinbauer, M.G., and Höfle, M.G. ( 1998 ) Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl Environ Microbiol 64: 431 – 438.en_US
dc.identifier.citedreferenceWeinbauer, M.G., and Peduzzi, P. ( 1994 ) Frequency, size and distribution of bacteriophages in different marine bacterial morphotypes. Mar Ecol Prog Ser 108: 11 – 20.en_US
dc.identifier.citedreferenceWichels, A., Biel, S.S., Gelderblom, H.R., Brinkhoff, T., Muyzer, G., and Schuett, C. ( 1998 ) Bacteriophage diversity in the North Sea. Appl Environ Microbiol 64: 4128 – 4133.en_US
dc.identifier.citedreferenceWichels, A., Gerdts, G., and Schuett, C. ( 2002 ) Pseudoalteromonas spp. phages, a significant group of marine bacteriophages in the North Sea. Aquat Microb Ecol 27: 233 – 239.en_US
dc.identifier.citedreferenceWilhelm, S.W., Weinbauer, M.G., Suttle, C.A., and Jeffrey, W.H. ( 1998 ) The role of sunlight in the removal and repair of viruses in the sea. Limnol Oceanogr 43: 586 – 592.en_US
dc.identifier.citedreferenceYoon, H.S., Price, D.C., Stepanauskas, R., Rajah, V.D., Sieracki, M.E., Wilson, W.H., et al. ( 2011 ) Single‐cell genomics reveals organismal interactions in uncultivated marine protists. Science 332: 714 – 717.en_US
dc.identifier.citedreferenceZeng, L., Skinner, S.O., Zong, C., Sippy, J., Feiss, M., and Golding, I. ( 2010 ) Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 141: 682 – 691.en_US
dc.identifier.citedreferenceZhang, Y., and Jiao, N. ( 2009 ) Roseophage RDJLΦ1, infecting the aerobic anoxygenic phototrophic bacterium Roseobacter denitrificans OCh114. Appl Environ Microbiol 75: 1745 – 1749.en_US
dc.identifier.citedreferenceZhou, J., Xue, K., Xie, J., Deng, Y., Wu, L., Cheng, X., et al. ( 2012 ) Microbial mediation of carbon‐cycle feedbacks to climate warming. Nat Clim Change 2: 106 – 110.en_US
dc.identifier.citedreferenceAdams, M.K. ( 1959 ) Bacteriophages. New York, USA: Interscience Publ.en_US
dc.identifier.citedreferenceAllen, L.Z., Ishoey, T., Novotny, M.A., McLean, J.S., Lasken, R.S., and Williamson, S.J. ( 2011 ) Single virus genomics: a new tool for virus discovery. PLoS ONE 6: e17722.en_US
dc.identifier.citedreferenceAmann, R., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., and Stahl, D.A. ( 1990 ) Combination of 16S rRNA‐targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56: 1919 – 1925.en_US
dc.identifier.citedreferenceAmann, R.I., Ludwig, W., and Schleifer, K.‐H. ( 1995 ) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143 – 169.en_US
dc.identifier.citedreferenceBakshi, S., Siryaporn, A., Goulian, M., and Weisshaar, J.C. ( 2012 ) Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol Microbiol 85: 21 – 38.en_US
dc.identifier.citedreferenceBehrenfeld, M.J., O'Malley, R.T., Siegel, D.A., McClain, C.R., Sarmiento, J.L., Feldman, G.C., et al. ( 2006 ) Climate‐driven trends in contemporary ocean productivity. Nature 444: 752 – 755.en_US
dc.identifier.citedreferenceBernhard, J.M., Edgcomb, V.P., Casciotti, K.L., McIlvin, M.R., and Beaudoin, D.J. ( 2012 ) Denitrification likely catalyzed by endobionts in an allogromiid foraminifer. ISME J 6: 951 – 960.en_US
dc.identifier.citedreferenceBobrow, M.N., Litt, G.L., Shaughnessy, K.J., Mayer, P.C., and Conlon, J. ( 1992 ) The use of catalyzed reporter deposition as a means of signal amplification in a variety of formats. J Immunol Methods 150: 145 – 149.en_US
dc.identifier.citedreferenceBorsheim, K.Y. ( 1993 ) Native marine bacteriophages. FEMS Microbiol Lett 102: 141 – 159.en_US
dc.identifier.citedreferenceBragg, J.G., and Chisholm, S.W. ( 2008 ) Modeling the fitness consequences of a cyanophage‐encoded photosynthesis gene. PLoS ONE 3: e3550.en_US
dc.identifier.citedreferenceBreitbart, M., Thompson, L.R., Suttle, C.S., and Sullivan, M.B. ( 2007 ) Exploring the vast diversity of marine viruses. Oceanography 20: 353 – 362.en_US
dc.identifier.citedreferenceMann, N.H., Cook, A., Millard, A., Bailey, S., and Clokie, M. ( 2003 ) Marine ecosystems: bacterial photosynthesis genes in a virus. Nature 424: 741 – 741.en_US
dc.identifier.citedreferenceBrum, J.R., Steward, G.F., Jiang, S.C., and Jellison, R. ( 2005 ) Spatial and temporal variability of prokaryotes, viruses, and viral infections of prokaryotes in an alkaline, hypersaline lake. Aquat Microb Ecol 41: 247 – 260.en_US
dc.identifier.citedreferenceClokie, M.R.J., Shan, J., Bailey, S., Jia, Y., and Krisch, H.M. ( 2006 ) Transcription of a ‘photosynthetic’ T4‐type phage during infection of a marine cyanobacterium. Environ Microbiol 8: 827 – 835.en_US
dc.identifier.citedreferenceComeau, A.M., and Suttle, C.A. ( 2007 ) Distribution, genetic richness and phage sensitivity of Vibrio spp. from coastal British Columbia. Environ Microbiol 9: 1790 – 1800.en_US
dc.identifier.citedreferenceDeng, L., Gregory, A., Yilmaz, S., Poulos, B.T., Hugenholtz, P., and Sullivan, M.B. ( 2012 ) Contrasting life strategies of viruses that infect photo‐ and heterotrophic bacteria, as revealed by viral tagging. mBio 3: e00373‐12.en_US
dc.identifier.citedreferenceDuhaime, M.B., and Sullivan, M.B. ( 2012 ) Ocean viruses: rigorously evaluating the metagenomic sample‐to‐sequence pipeline. Virology 434: 181 – 186.en_US
dc.identifier.citedreferenceDuhaime, M.B., Deng, L., Poulos, B.T., and Sullivan, M.B. ( 2012 ) Towards quantitative metagenomics of wild viruses and other ultra‐low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method. Environ Microbiol 14: 2526 – 2537.en_US
dc.identifier.citedreferenceEllis, E.L., and Delbrueck, M. ( 1939 ) The growth of bacteriophage. J Gen Physiol 22: 365 – 384.en_US
dc.identifier.citedreferenceFalkowski, P.G., Fenchel, T., and Delong, E.F. ( 2008 ) The microbial engines that drive Earth's biogeochemical cycles. Science 320: 1034 – 1039.en_US
dc.identifier.citedreferenceFuhrman, J.A. ( 1999 ) Marine viruses and their biogeochemical and ecological effects. Nature 399: 541 – 548.en_US
dc.identifier.citedreferenceFuhrman, J.A., and Noble, R.T. ( 1995 ) Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr 40: 1236 – 1242.en_US
dc.identifier.citedreferenceHellweger, F.L. ( 2009 ) Carrying photosynthesis genes increases ecological fitness of cyanophage in silico. Environ Microbiol 11: 1386 – 1394.en_US
dc.identifier.citedreferenceHolmfeldt, K., Middelboe, M., Nybroe, O., and Riemann, L. ( 2007 ) Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts. Appl Environ Microbiol 73: 6730 – 6739.en_US
dc.identifier.citedreferenceHolmström, C., and Kjelleberg, S. ( 1999 ) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30: 285 – 293.en_US
dc.identifier.citedreferenceHoshino, T., and Schramm, A. ( 2010 ) Detection of denitrification genes by in situ rolling circle amplification‐fluorescence in situ hybridization to link metabolic potential with identity inside bacterial cells. Environ Microbiol 12: 2508 – 2517.en_US
dc.identifier.citedreferenceHurwitz, B.L., Deng, L., Poulos, B.T., and Sullivan, M.B. ( 2012 ) Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics. Environ Microbiol. doi 10.1111/j.1462‐2920.2012.02836.x. (in press)en_US
dc.identifier.citedreferenceJiang, S.C., Kellogg, C.A., and Paul, J.H. ( 1998 ) Characterization of marine temperate phage‐host systems isolated from Mamala Bay, Oahu, Hawaii. Appl Environ Microbiol 64: 535 – 542.en_US
dc.identifier.citedreferenceKawakami, S., Kubota, K., Imachi, H., Yamaguchi, T., Harada, H., and Ohashi, A. ( 2010 ) Detection of single copy genes by two‐pass tyramide signal amplification Fluorescence in situ hybridization (Two‐Pass TSA‐FISH) with single oligonucleotide probes. Microbes Environ 25: 15 – 21.en_US
dc.identifier.citedreferenceKawakami, S., Hasegawa, T., Imachi, H., Yamaguchi, T., Harada, H., Ohashi, A., and Kubota, K. ( 2012 ) Detection of single‐copy functional genes in prokaryotic cells by two‐pass TSA‐FISH with polynucleotide probes. J Microbiol Methods 88: 218 – 223.en_US
dc.identifier.citedreferenceKenzaka, T., Tani, K., and Nasu, M. ( 2010 ) High‐frequency phage‐mediated gene transfer in freshwater environments determined at single‐cell level. ISME J 4: 648 – 659.en_US
dc.identifier.citedreferenceKristensen, D.M., Waller, A.S., Yamada, T., Bork, P., Mushegian, A.R., and Koonin, E.V. ( 2012 ) Orthologous gene clusters and taxon signature genes for viruses of prokaryotes. J Bacteriol. doi: 10.1128/jb.01801‐12 (in press)en_US
dc.identifier.citedreferenceLabrie, S.J., Frois‐Moniz, K., Osburne, M.S., Kelly, L., Roggensack, S.E., Sullivan, M.B., et al. ( 2013 ) Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol. doi: 10.1111/1462‐2920.12053 (in press)en_US
dc.identifier.citedreferenceLenk, S., Moraru, C., Hahnke, S., Arnds, J., Richter, M., Kube, M., et al. ( 2012 ) Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes. ISME J 6: 2178 – 2187.en_US
dc.identifier.citedreferenceLindell, D., Sullivan, M.B., Johnson, Z.I., Tolonen, A.C., Rohwer, F., and Chisholm, S.W. ( 2004 ) Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci USA 101: 11013 – 11018.en_US
dc.identifier.citedreferenceLindell, D., Jaffe, J.D., Johnson, Z.I., Church, G.M., and Chisholm, S.W. ( 2005 ) Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438: 86 – 89.en_US
dc.identifier.citedreferenceLindell, D., Jaffe, J.D., Coleman, M.L., Futschik, M.E., Axmann, I.M., Rector, T., et al. ( 2007 ) Genome‐wide expression dynamics of a marine virus and host reveal features of co‐evolution. Nature 449: 83 – 86.en_US
dc.identifier.citedreferenceLu, J., Chen, F., and Hodson, R.E. ( 2001 ) Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp. in river estuaries. Appl Environ Microbiol 67: 3285 – 3290.en_US
dc.identifier.citedreferenceMarston, M.F., and Sallee, J.L. ( 2003 ) Genetic diversity and temporal variation in the cyanophage community infecting marine Synechococcus species in Rhode Island's coastal waters. Appl Environ Microbiol 69: 4639 – 4647.en_US
dc.identifier.citedreferenceMillard, A., Clokie, M.R., Shub, D.A., and Mann, N.H. ( 2004 ) Genetic organization of the psbAD region in phages infecting marine Synechococcus strains. Proc Natl Acad Sci USA 101: 11007 – 11012.en_US
dc.identifier.citedreferenceMoraru, C., and Amann, R. ( 2012 ) Crystal ball: fluorescence in situ hybridization in the age of super‐resolution microscopy. Syst Appl Microbiol 35: 549 – 552.en_US
dc.identifier.citedreferenceMoraru, C., Lam, P., Fuchs, B.M., Kuypers, M.M.M., and Amann, R. ( 2010 ) GeneFISH – an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environ Microbiol 12: 3057 – 3073.en_US
dc.identifier.citedreferenceMoraru, C., Moraru, G., Fuchs, B.M., and Amann, R. ( 2011 ) Concepts and software for a rational design of polynucleotide probes. Environ Microbiol Rep 3: 69 – 78.en_US
dc.identifier.citedreferencePaul, J.H. ( 2008 ) Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J 2: 579 – 589.en_US
dc.identifier.citedreferencePernthaler, A., Pernthaler, J., and Amann, R. ( 2002 ) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68: 3094 – 3101.en_US
dc.identifier.citedreferencePetersen, J.M., Zielinski, F.U., Pape, T., Seifert, R., Moraru, C., Amann, R., et al. ( 2011 ) Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476: 176 – 180.en_US
dc.identifier.citedreferenceProctor, L.M., and Fuhrman, J.A. ( 1990 ) Viral mortality of marine bacteria and cyanobacteria. Nature 343: 60 – 62.en_US
dc.identifier.citedreferenceProctor, L.M., Okubo, A., and Fuhrman, J.A. ( 1993 ) Calibrating estimates of phage‐induced mortality in marine bacteria: ultrastructural studies of marine bacteriophage development from one‐step growth experiments. Microb Ecol 25: 161 – 182.en_US
dc.identifier.citedreferencePtashne, M. ( 2011 ) Principles of a switch. Nat Chem Biol 7: 484 – 487.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.