Show simple item record

Development of Degradable, pH‐Sensitive Star Vectors for Enhancing the Cytoplasmic Delivery of Nucleic Acids

dc.contributor.authorDurmaz, Yasemin Yukselen_US
dc.contributor.authorLin, Yen‐lingen_US
dc.contributor.authorElSayed, Mohamed E. H.en_US
dc.date.accessioned2013-09-04T17:18:38Z
dc.date.available2014-10-06T19:17:42Zen_US
dc.date.issued2013-08-19en_US
dc.identifier.citationDurmaz, Yasemin Yuksel; Lin, Yen‐ling ; ElSayed, Mohamed E. H. (2013). "Development of Degradable, pHâ Sensitive Star Vectors for Enhancing the Cytoplasmic Delivery of Nucleic Acids." Advanced Functional Materials 23(31): 3885-3895. <http://hdl.handle.net/2027.42/99666>en_US
dc.identifier.issn1616-301Xen_US
dc.identifier.issn1616-3028en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99666
dc.description.abstractThe report describes the synthesis of degradable, pH‐sensitive, membrane‐destabilizing, star‐shaped polymers where copolymers of hydrophobic hexyl methacrylate (HMA) and 2‐(dimethylamino)ethyl methacrylate (DMAEMA) monomers are grafted from the secondary face of a beta‐cyclodextrin (β‐CD) core via acid‐labile hydrazone linkages using atom transfer radical polymerization. The effect of the graft's molecular weight, HMA/DMAEMA molar ratio, and the fraction of DMAEMA converted to cationic N,N,N‐trimethylaminoethyl methacrylate (TMAEMA) monomers on polymer's transfection capacity is systematically investigated. Results show that all star‐shaped polymers condense anti‐GAPDH silencing RNA (siRNA) into nanosized particles at +/‐ ratio ≤ 4:1. Star polymers with shorter (25kDa) P(HMA‐ co ‐DMAEMA‐ co ‐TMAEMA) grafts are more efficient and less cytotoxic than carriers with longer (40kDa) grafts. The results show that increasing the ratio of hydrophobic HMA monomers in graft's composition higher than 50 mole% dramatically reduces polymer's aqueous solubility and abolishes their transfection capacity. Further, retention of DMAEMA monomers in graft's composition provide a buffering capacity that enhanced the endosomal escape and transfection capacity of the polymers. These systematic studies show that β‐CD‐P(HMA‐ co ‐DMAEMA‐ co ‐TMAEMA) 4.8 polymer with a 25 kDa average graft's molecular weight and a 50/25/25 ratio of HMA/DMAEMA/TMAEMA monomers is the most efficient carrier in delivering the siRNA cargo into the cytoplasm of epithelial cancer cells. A series of degradable, pH‐sensitive, membrane‐destabilizing, star‐shaped polymers is synthesized. Star polymers are engineered to “sense” the drop in endosomal pH, which triggers the hydrolysis of acid‐labile hydrazone linkages and release of membrane‐active grafts that rupture the endosomal membrane and release the loaded siRNA cargo into the cytoplasm to produce the desired knockdown of targeted gene expression at both the mRNA and protein levels.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherAcid‐Labile Hydrazone Linkageen_US
dc.subject.otherCytoplasmic Silencing RNA Deliveryen_US
dc.subject.otherStar Polymersen_US
dc.subject.otherPH‐Sensitive Carriersen_US
dc.subject.otherBeta‐Cyclodextrinen_US
dc.titleDevelopment of Degradable, pH‐Sensitive Star Vectors for Enhancing the Cytoplasmic Delivery of Nucleic Acidsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelEngineering (General)en_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Department of Biomedical Engineering, 1101 Beal Avenue, Lurie Biomedical Engineering Building, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumUniversity of Michigan, Department of Biomedical Engineering, 1101 Beal Avenue, Lurie Biomedical Engineering Building, Ann Arbor, MI 48109, USA.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99666/1/3885_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99666/2/adfm_201203762_sm_suppl.pdf
dc.identifier.doi10.1002/adfm.201203762en_US
dc.identifier.sourceAdvanced Functional Materialsen_US
dc.identifier.citedreferenceE. R. Gillies, J. M. J. Frechet, J. Am. Chem. Soc. 2002, 124, 14137.en_US
dc.identifier.citedreferencea) O. Boussif, M. A. Zanta, J. P. Behr, Gene Ther. 1996, 3, 1074; b) T. Merdan, K. Kunath, H. Petersen, U. Bakowsky, K. H. Voigt, J. Kopecek, T. Kissel, Bioconjugate Chem. 2005, 16, 785.en_US
dc.identifier.citedreferenceR. M. Schiffelers, A. Ansari, J. Xu, Q. Zhou, Q. Q. Tang, G. Storm, G. Molema, P. Y. Lu, P. V. Scaria, M. C. Woodle, Nucleic Acids Res. 2004, 32.en_US
dc.identifier.citedreferencea) S. Boeckle, K. von Gersdorff, S. van der Piepen, C. Culmsee, E. Wagner, M. Ogris, J. Gene Med. 2004, 6, 1102; b) M. L. Forrest, J. T. Koerber, D. W. Pack, Bioconjugate Chem. 2003, 14, 934; c) M. Thomas, Q. Ge, J. J. Lu, J. Z. Chen, A. M. Klibanov, Pharm. Res. 2005, 22, 373.en_US
dc.identifier.citedreferencea) M. E. Davis, M. E. Brewster, Nat. Rev. Drug Discovery 2004, 3, 1023; b) E. M. M. Del Valle, Process Biochem. 2004, 39, 1033; c) K. Uekama, F. Hirayama, T. Irie, Chem. Rev. 1998, 98, 2045.en_US
dc.identifier.citedreferencea) D. A. Fulton, J. F. Stoddart, Org. Lett. 2000, 2, 1113; b) F. Ortega‐Caballero, C. O. Mellet, L. Le Gourrierec, N. Guilloteau, C. Di Giorgio, P. Vierling, J. Defaye, J. M. G. Fernandez, Org. Lett. 2008, 10, 5143; c) S. Srinivasachari, K. M. Fichter, T. M. Reineke, J. Am. Chem. Soc. 2008, 130, 4618.en_US
dc.identifier.citedreferenceP. van de Wetering, E. E. Moret, N. M. E. Schuurmans‐Nieuwenbroek, M. J. van Steenbergen, W. E. Hennink, Bioconjugate Chem. 1999, 10, 589.en_US
dc.identifier.citedreferenceN. J. Zuidam, G. Posthuma, E. T. J. de Vries, D. J. A. Crommelin, W. E. Hennink, G. Storm, J. Drug Targeting 2000, 8, 51.en_US
dc.identifier.citedreferenceM. Neu, D. Fischer, T. Kissel, J. Gene Med. 2005, 7, 992.en_US
dc.identifier.citedreferencea) K. S. Pafiti, N. P. Mastroyiannopoulos, L. A. Phylactou, C. S. Patrickios, Biomacromolecules 2011, 12, 1468; b) F. J. Xu, Z. X. Zhang, Y. Ping, J. Li, E. T. Kang, K. G. Neoh, Biomacromolecules 2009, 10, 285; c) F. Y. Dai, P. Sun, Y. J. Liu, W. G. Liu, Biomaterials 2010, 31, 559.en_US
dc.identifier.citedreferenceC. V. Synatschke, A. Schallon, V. Jerome, R. Freitag, A. H. E. Muller, Biomacromolecules 2011, 12, 4247.en_US
dc.identifier.citedreferenceB. Newland, H. Y. Tai, Y. Zheng, D. Velasco, A. Di Luca, S. M. Howdle, C. Alexander, W. X. Wang, A. Pandit, Chem. Commun. 2010, 46, 4698.en_US
dc.identifier.citedreferencea) P. vandeWetering, J. Y. Cherng, H. Talsma, W. E. Hennink, J. Controlled Release 1997, 49, 59; b) J. M. Layman, S. M. Ramirez, M. D. Green, T. E. Long, Biomacromolecules 2009, 10, 1244; c) T. K. Georgiou, M. Vamvakaki, C. S. Patrickios, E. N. Yamasaki, L. A. Phylactou, Biomacromolecules 2004, 5, 2221.en_US
dc.identifier.citedreferencea) J. S. Wang, K. Matyjaszewski, J. Am. Chem. Soc. 1995, 117, 5614; b) M. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura, Macromolecules 1995, 28, 1721.en_US
dc.identifier.citedreferencea) F. Ganachaud, M. J. Monteiro, R. G. Gilbert, M. A. Dourges, S. H. Thang, E. Rizzardo, Macromolecules 2000, 33, 6738; b) J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 1998, 31, 5559.en_US
dc.identifier.citedreferencea) H. Liu, X. Z. Jiang, J. Fan, G. H. Wang, S. Y. Liu, Macromolecules 2007, 40, 9074; b) F. J. Xu, H. Z. Li, J. Li, Z. X. Zhang, E. T. Kang, K. G. Neoh, Biomaterials 2008, 29, 3023; c) A. W. York, S. E. Kirkland, C. L. McCormick, Adv. Drug Delivery Rev. 2008, 60, 1018.en_US
dc.identifier.citedreferenceY. A. Ping, C. D. Liu, G. P. Tang, J. S. Li, J. Li, W. T. Yang, F. J. Xu, Adv. Funct. Mater. 2010, 20, 3106.en_US
dc.identifier.citedreferenceT. K. Georgiou, M. Vamvakaki, L. A. Phylactou, C. S. Patrickios, Biomacromolecules 2005, 6, 2990.en_US
dc.identifier.citedreferencea) M. R. Park, K. O. Han, I. K. Han, M. H. Cho, J. W. Nah, Y. J. Choi, C. S. Cho, J. Controlled Release 2005, 105, 367; b) R. Qi, Y. Gao, Y. Tang, R. R. He, T. L. Liu, Y. He, S. Sun, B. Y. Li, Y. B. Li, G. Liu, AAPS J. 2009, 11, 395.en_US
dc.identifier.citedreferenceF. Yuan, M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, R. K. Jain, Cancer Res. 1995, 55, 3752.en_US
dc.identifier.citedreferenceM. Neu, D. Fischer, T. Kissel, J. Gene Med. 2005, 7, 992.en_US
dc.identifier.citedreferencea) S. M. Simon, Drug Discovery Today 1999, 4, 32; b) S. L. Rybak, F. Lanni, R. F. Murphy, Biophys. J. 1997, 73, 674; c) C. C. Cain, D. M. Sipe, R. F. Murphy, Proc. Natl. Acad. Sci. USA 1989, 86, 544.en_US
dc.identifier.citedreferencea) O. A. Weisz, Traffic 2003, 4, 57; b) M. Duvvuri, S. Konkar, K. H. Hong, B. S. J. Blagg, J. P. Krise, ACS Chem. Biol. 2006, 1, 309; c) S. Simon, D. Roy, M. Schindler, Proc. Natl. Acad. Sci. USA 1994, 91, 1128.en_US
dc.identifier.citedreferenceB. Zhang, S. Mallapragada, Acta Biomater. 2011, 7, 1580.en_US
dc.identifier.citedreferenceA. Imai, B. D. Zeitlin, F. Visioli, Z. H. Dong, Z. C. Zhang, S. Krishnamurthy, E. Light, F. Worden, S. M. Wang, J. E. Nor, Cancer Res. 2012, 72, 716.en_US
dc.identifier.citedreferenceA. Hassan, Recent Pat. Cardiovasc. Drug Discovery 2006, 1, 141.en_US
dc.identifier.citedreferencea) S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, T. Tuschl, Nature 2001, 411, 494; b) M. T. McManus, P. A. Sharp, Nat. Rev. Genet. 2002, 3, 737; c) M. Scherr, M. A. Morgan, M. Eder, Curr. Med. Chem. 2003, 10, 245; d) L. Timmons, A. Fire, Nature 1998, 395, 854.en_US
dc.identifier.citedreferenceJ. Zhang, Y. O. Wu, L. Xiao, K. Li, L. L. Chen, P. Sirois, Mol. Biotechnol. 2007, 37, 225.en_US
dc.identifier.citedreferencea) A. de Fougerolles, H. P. Vornlocher, J. Maraganore, J. Lieberman, Nat. Rev. Drug Discovery 2007, 6, 443; b) E. Koutsilieri, A. Rethwilm, C. Scheller, J. Neural Transm. Suppl. 2007, 43.en_US
dc.identifier.citedreferencea) D. Jere, H. L. Jiang, R. Arote, Y. K. Kim, Y. J. Choi, M. H. Cho, T. Akaike, C. S. Cho, Expert Opin. Drug Delivery 2009, 6, 827; b) W. F. Lai, M. C. Lin, J. Controlled Release 2009, 134, 158; c) P. Midoux, C. Pichon, J. J. Yaouanc, P. A. Jaffres, Br. J. Pharmacol. 2009, 157, 166; d) T. O. Pangburn, M. A. Petersen, B. Waybrant, M. M. Adil, E. Kokkoli, J. Biomech. Eng. 2009, 131, 074005.en_US
dc.identifier.citedreferencea) B. Martin, M. Sainlos, A. Aissaoui, N. Oudrhiri, M. Hauchecorne, J. P. Vigneron, J. M. Lehn, P. Lehn, Curr. Pharm. Des. 2005, 11, 375; b) D. A. Medvedeva, M. A. Maslov, R. N. Serikov, N. G. Morozova, G. A. Serebrenikova, D. V. Sheglov, A. V. Latyshev, V. V. Vlassov, M. A. Zenkova, J. Med. Chem. 2009, 52, 6558.en_US
dc.identifier.citedreferenceO. Boussif, F. Lezoualc'h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, J. P. Behr, Proc. Natl. Acad. Sci. USA 1995, 92, 7297.en_US
dc.identifier.citedreferenceL. K. Medina‐Kauwe, J. Xie, S. Hamm‐Alvarez, Gene Therapy 2005, 12, 1734.en_US
dc.identifier.citedreferencea) A. S. Hoffman, P. S. Stayton, O. Press, N. Murthy, C. A. Lackey, C. Cheung, F. Black, J. Campbell, N. Fausto, T. R. Kyriakides, P. Bornstein, Polym. Adv. Technol. 2002, 13, 992; b) P. S. Stayton, M. E. El‐Sayed, N. Murthy, V. Bulmus, C. Lackey, C. Cheung, A. S. Hoffman, Orthod. Craniofac. Res. 2005, 8, 219.en_US
dc.identifier.citedreferencea) M. E. El‐Sayed, A. S. Hoffman, P. S. Stayton, Expert Opin. Biol. Ther. 2005, 5, 23; b) S. M. Henry, M. E. H. El‐Sayed, C. M. Pirie, A. S. Hoffman, P. S. Stayton, Biomacromolecules 2006, 7, 2407; c) P. S. Stayton, A. S. Hoffman, M. El‐Sayed, S. Kulkarni, T. Shimoboji, N. Murthy, V. Bulmus, C. Lackey, Proc. IEEE 2005, 93, 726.en_US
dc.identifier.citedreferenceP. Schoen, A. Chonn, P. R. Cullis, J. Wilschut, P. Scherrer, Gene Therapy 1999, 6, 823.en_US
dc.identifier.citedreferenceR. E. Johns, M. E. H. El‐Sayed, V. Bulmus, J. Cuschieri, R. Maier, A. S. Hoffman, P. S. Stayton, J. Biomater. Sci.‐Polym. E 2008, 19, 1333.en_US
dc.identifier.citedreferenceY. L. Lin, G. H. Jiang, L. K. Birrell, M. E. H. El‐Sayed, Biomaterials 2010, 31, 7150.en_US
dc.identifier.citedreferenceC. A. Lackey, O. W. Press, A. S. Hoffman, P. S. Stayton, Bioconjugate Chem. 2002, 13, 996.en_US
dc.identifier.citedreferenceT. R. Kyriakides, C. Y. Cheung, N. Murthy, P. Bornstein, P. S. Stayton, A. S. Hoffman, J. Controlled Release 2002, 78, 295.en_US
dc.identifier.citedreferenceM. E. H. El‐Sayed, A. S. Hoffman, P. S. Stayton, J. Controlled Release 2005, 104, 415.en_US
dc.identifier.citedreferencea) V. Bulmus, M. Woodward, L. Lin, N. Murthy, P. Stayton, A. Hoffman, J. Controlled Release 2003, 93, 105; b) M. E. H. El‐Sayed, A. S. Hoffman, P. S. Stayton, J. Controlled Release 2005, 101, 47.en_US
dc.identifier.citedreferencea) M. Kurisawa, M. Yokoyama, T. Okano, J. Controlled Release 2000, 68, 1; b) N. Murthy, I. Chang, P. Stayton, A. Hoffman, Macromol. Symp. 2001, 172, 49; c) R. K. Oskuee, A. Dehshahri, W. T. Shier, M. Ramezani, J. Gene Med. 2009, 11, 921; d) Y. T. Wen, S. R. Pan, X. Luo, X. Zhang, W. Zhang, M. Feng, Bioconjugate Chem. 2009, 20, 322.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.