Show simple item record

Recommended Joint and Meta‐Analysis Strategies for Case‐Control Association Testing of Single Low‐Count Variants

dc.contributor.authorMa, Clementen_US
dc.contributor.authorBlackwell, Tomen_US
dc.contributor.authorBoehnke, Michaelen_US
dc.contributor.authorScott, Laura J.en_US
dc.date.accessioned2013-09-04T17:18:44Z
dc.date.available2014-10-06T19:17:42Zen_US
dc.date.issued2013-09en_US
dc.identifier.citationMa, Clement; Blackwell, Tom; Boehnke, Michael; Scott, Laura J. (2013). "Recommended Joint and Meta‐Analysis Strategies for Case‐Control Association Testing of Single Low‐Count Variants." Genetic Epidemiology 37(6): 539-550. <http://hdl.handle.net/2027.42/99692>en_US
dc.identifier.issn0741-0395en_US
dc.identifier.issn1098-2272en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99692
dc.description.abstractIn genome‐wide association studies of binary traits, investigators typically use logistic regression to test common variants for disease association within studies, and combine association results across studies using meta‐analysis. For common variants, logistic regression tests are well calibrated, and meta‐analysis of study‐specific association results is only slightly less powerful than joint analysis of the combined individual‐level data. In recent sequencing and dense chip based association studies, investigators increasingly test low‐frequency variants for disease association. In this paper, we seek to (1) identify the association test with maximal power among tests with well controlled type I error rate and (2) compare the relative power of joint and meta‐analysis tests. We use analytic calculation and simulation to compare the empirical type I error rate and power of four logistic regression based tests: Wald, score, likelihood ratio, and Firth bias‐corrected. We demonstrate for low‐count variants (roughly minor allele count [MAC] < 400) that: (1) for joint analysis, the Firth test has the best combination of type I error and power; (2) for meta‐analysis of balanced studies (equal numbers of cases and controls), the score test is best, but is less powerful than Firth test based joint analysis; and (3) for meta‐analysis of sufficiently unbalanced studies, all four tests can be anti‐conservative, particularly the score test. We also establish MAC as the key parameter determining test calibration for joint and meta‐analysis.en_US
dc.publisherChapman and Hallen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMeta‐Analysisen_US
dc.subject.otherJoint Analysisen_US
dc.subject.otherSingle Variant Testsen_US
dc.subject.otherSingle Nucleotide Polymorphismsen_US
dc.subject.otherLow‐Frequency Variantsen_US
dc.titleRecommended Joint and Meta‐Analysis Strategies for Case‐Control Association Testing of Single Low‐Count Variantsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23788246en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99692/1/gepi21742.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99692/2/gepi21742-sup-0010-figureS1.pdf
dc.identifier.doi10.1002/gepi.21742en_US
dc.identifier.sourceGenetic Epidemiologyen_US
dc.identifier.citedreferenceMantel N, Haenszel W. 1959. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22: 719 – 748.en_US
dc.identifier.citedreferenceMehta CR, Patel NR. 1995. Exact logistic regression: theory and examples. Stat Med 14: 2143 – 2160.en_US
dc.identifier.citedreferencePloner M, Dunkler D, Southworth H, Heinze G. 2010. logistf: Firth's bias reduced logistic regression. Version 1.10. Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna. Available at: http://CRAN.R‐project.org/package=logistf.en_US
dc.identifier.citedreferenceSteinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, Styrkarsdottir U, Gretarsdottir S, Emilsson V, Ghosh S and others. 2007. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 39: 770 – 775.en_US
dc.identifier.citedreferenceR Development Core Team. 2012. R: A language and environment for statistical computation. Vienna, Austria: R Foundation for Statistical Computing. Available at: http://www.r‐project.org/en_US
dc.identifier.citedreferenceFirth D. 1993. Bias reduction of maximum likelihood estimates. Biometrika 80: 27 – 38.en_US
dc.identifier.citedreferenceHan B, Eskin E. 2011. Random‐effects model aimed at discovering associations in meta‐analysis of genome‐wide association studies. Am J Hum Genet 88: 586 – 598.en_US
dc.identifier.citedreferenceHauck WW, Donner A. 1977. Wald's test as applied to hypotheses in logit analysis. J Am Stat Assoc 72: 851 – 853.en_US
dc.identifier.citedreferenceHeinze G, Schemper M. 2002. A solution to the problem of separation in logistic regression. Stat Med 21: 2409 – 2419.en_US
dc.identifier.citedreferenceHindorff LA, MacArthur J, Wise A, Junkins HA, Hall PN, Klemm AK, Manolio TA. 2012. A catalog of published genome‐wide association studies. NHGRI. Available at: www.genome.gov/gwastudiesen_US
dc.identifier.citedreferenceKang HM. 2012. EPACTS: efficient and parallelizable association container toolbox. Department of Biostatistics and Center for Statistical Genetics, University of Michigan. Available at: http://www.sph.umich.edu/csg/kang/epacts/.en_US
dc.identifier.citedreferenceLi B, Leal SM. 2008. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83: 311 – 321.en_US
dc.identifier.citedreferenceLin DY, Zeng D. 2010. Meta‐analysis of genome‐wide association studies: no efficiency gain in using individual participant data. Genet Epidemiol 34: 60 – 66.en_US
dc.identifier.citedreferenceMadsen BE, Browning SR. 2009. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5: e1000384.en_US
dc.identifier.citedreferenceYates F. 1934. Contingency tables involving small numbers and the χ 2 test. Supp J R Stat Soc 1: 217 – 235.en_US
dc.identifier.citedreferenceXing G, Lin CY, Wooding SP, Xing C. 2012. Blindly using Wald's test can miss rare disease‐causal variants in case‐control association studies. Ann Hum Genet 76: 168 – 177.en_US
dc.identifier.citedreferenceWu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. 2011. Rare‐variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89: 82 – 93.en_US
dc.identifier.citedreferenceWiller CJ, Li Y, Abecasis GR. 2010. METAL: fast and efficient meta‐analysis of genomewide association scans. Bioinformatics 26: 2190 – 2191.en_US
dc.identifier.citedreferenceUpton GJG. 1982. A comparison of alternative tests for the 2×2 comparative trial. J R Stat Soc Ser A 145: 86 – 105.en_US
dc.identifier.citedreferenceAlbert A, Anderson JA. 1984. On the existence of maximum likelihood estimates in logistic regression models. Biometrika 71: 1 – 10.en_US
dc.identifier.citedreferenceCox DR, Hinkley DV. 1974. Theoretical Statistics. London: Chapman and Hall.en_US
dc.identifier.citedreferenceDersimonian R, Laird N. 1986. Meta‐analysis in clinical trials. Control Clin Trials 7: 177 – 188.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.