Show simple item record

Poloidal ULF wave observed in the plasmasphere boundary layer

dc.contributor.authorLiu, W.en_US
dc.contributor.authorCao, J. B.en_US
dc.contributor.authorLi, X.en_US
dc.contributor.authorSarris, T. E.en_US
dc.contributor.authorZong, Q.‐g.en_US
dc.contributor.authorHartinger, M.en_US
dc.contributor.authorTakahashi, K.en_US
dc.contributor.authorZhang, H.en_US
dc.contributor.authorShi, Q. Q.en_US
dc.contributor.authorAngelopoulos, V.en_US
dc.date.accessioned2013-09-04T17:18:45Z
dc.date.available2014-09-02T14:12:52Zen_US
dc.date.issued2013-07en_US
dc.identifier.citationLiu, W.; Cao, J. B.; Li, X.; Sarris, T. E.; Zong, Q.‐g. ; Hartinger, M.; Takahashi, K.; Zhang, H.; Shi, Q. Q.; Angelopoulos, V. (2013). "Poloidal ULF wave observed in the plasmasphere boundary layer." Journal of Geophysical Research: Space Physics 118(7): 4298-4307. <http://hdl.handle.net/2027.42/99699>en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99699
dc.description.abstractWe report on a rare ultra‐low‐frequency (ULF) wave generation event associated with the formation of a plasmasphere boundary layer (PBL), which was well observed by one of the THEMIS satellites, TH‐D, during subsequent outbound passes. On 13 September 2011, TH‐D observed a sharp plasmapause at L = 3.4. The plasmasphere started to expand and continued to be refilled on 14 September. On 15 September, a PBL was formed with two density gradients at L = 4.4 and 6.5, respectively. Within the two density gradients, strong radial magnetic field and azimuthal electric field oscillations were observed, suggesting poloidal ULF waves. Based on the phase delay between magnetic and electric field signals, as well as the comparison between the observed wave frequency and predicted harmonic eigenfrequency, we find that the observed oscillations are second harmonic poloidal waves. Further investigation shows that the observed waves are likely generated by drift‐bounce resonance with “bump‐on‐tail” plasma distributions at ~10 keV. We demonstrate that the waves are excited within the PBL where the eigenfrequency is close to the bounce frequency of these hot protons, but not outside the PBL where the eigenfrequency deviates from the bounce frequency. Finally, we suggest that cold plasma density seems to be a controlling factor for ULF wave generation as well, in addition to the bump‐on‐tail energy source, by altering eigenfrequency of the local field lines. Key Points A rare ULF wave event associated with the formation of a PBL is reported. The wave is second harmonic poloidal mode generated by drift bounce resonance. Cold plasma density plays an important role in regulating ULF wave generation.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherAGUen_US
dc.subject.otherULF Waveen_US
dc.subject.otherDrift Bounce Resonanceen_US
dc.subject.otherPlasmasphere Boundary Layeren_US
dc.titlePoloidal ULF wave observed in the plasmasphere boundary layeren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99699/1/jgra50427.pdf
dc.identifier.doi10.1002/jgra.50427en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceRoederer, J. G. ( 1970 ). Dynamics of geomagnetically trapped radiation, in Physics and Chemistry in Space, 52 – 58, Springer, Berlin.en_US
dc.identifier.citedreferenceLi, X., et al. ( 2006 ), Correlation between the inner edge of outer radiation belt electrons and the innermost plasmapause location, Geophys. Res. Lett., 33, L14107, doi: 10.1029/2006GL026294.en_US
dc.identifier.citedreferenceLi, W., et al. ( 2010 ), Global distributions of superthermal electrons observed on THEMIS and potential mechanisms for access into the plasmasphere, J. Geophys. Res., 115, A00J10, doi: 10.1029/2010JA015687.en_US
dc.identifier.citedreferenceLiu, W., et al. ( 2009 ), Electric and magnetic field observations of Pc4 and Pc5 pulsations in the inner magnetosphere: A statistical study, J. Geophys. Res., 114, A12206, doi: 10.1029/2009JA014243.en_US
dc.identifier.citedreferenceLiu, W., et al. ( 2011 ), Spatial structure and temporal evolution of a dayside poloidal ULF wave event, Geophys. Res. Lett., 38, L19104, doi: 10.1029/2011GL049476.en_US
dc.identifier.citedreferenceMcFadden, J. P., et al. ( 2008 ), The THEMIS ESA plasma instrument and in‐flight calibration, Space Sci. Rev., 141, 277 – 302, doi: 10.1007/s11214‐008‐9440‐2.en_US
dc.identifier.citedreferenceMcIlwain, C. E. ( 1961 ), Coordinates for mapping the distributions of magnetically trapped particles, J. Geophys. Res., 66, 3681 – 3691.en_US
dc.identifier.citedreferenceMoldwin, M. B., and S. Zou ( 2012 ), The Importance of the Plasmasphere Boundary Layer for Understanding Inner Magnetosphere Dynamics, Geophysical Monograph Series, 199, 321 – 327.en_US
dc.identifier.citedreferenceMoldwin, M. B., et al. ( 2002 ) A new model of the location of the plasmapause: CRRES results, J. Geophys. Res., 107 ( A11 ), 1339, doi: 10.1029/2001JA009211.en_US
dc.identifier.citedreferenceNewton, R. S., D. J. Southwood, and W. J. Hughes ( 1978 ), Damping of geomagnetic pulsations by the ionosphere, Planet. Space Sci., 26, 201 – 209.en_US
dc.identifier.citedreferenceOrr, D., and J. A. D. Matthew ( 1971 ), The variation of geomagnetic micropulsation periods with latitude and the plasmapause, Planet. Space Sci., 19, 897 – 905, doi: 10.1016/0032‐0633(71)90141‐3.en_US
dc.identifier.citedreferencePedersen, A., et al. ( 1998 ), Electric field measurements in a tenuous plasma with spherical double probes, in Measurement Techniques in Space Plasmas: Fields, Geophys. Monogr. Ser., vol. 103, edited by R. F. Pfaff, J. E. Borovsky, and D. T. Young, pp. 1 – 12, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceSarris T. E., et al. ( 2009 ), Characterization of ULF pulsations by THEMIS, Geophys. Res. Lett., 36, L04104, doi: 10.1029/2008GL036732.en_US
dc.identifier.citedreferenceSarris, T. E., et al. ( 2010 ), THEMIS observations of the spatial extent and pressure‐pulse excitation of field line resonances, Geophys. Res. Lett., 37, L15104, doi: 10.1029/2010GL044125.en_US
dc.identifier.citedreferenceShue, J.‐H., et al. ( 1998 ), Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 103 ( A8 ), 17,691 – 17,700, doi: 10.1029/98JA01103.en_US
dc.identifier.citedreferenceSinger, H. J., D. J. Southwood, R. J. Walker, and M. G. Kivelson ( 1981 ), Alfvén wave resonances in a realistic magnetospheric magnetic field geometry, J. Geophys. Res., 86, 4589 – 4596.en_US
dc.identifier.citedreferenceSinger, H. J., J. W. Hughes, and C. T. Russell ( 1982 ), Standing hydromagnetic waves observed by ISEE 1 and 2: radial extent and harmonic, J. Geophys. Res., 87 ( A5 ), 3519 – 3529.en_US
dc.identifier.citedreferenceSmith, P. H., and R. A. Hoffman ( 1974 ), Direct Observations in the Dusk Hours of the Characteristics of the Storm Time Ring Current Particles During the Beginning of Magnetic Storms, J. Geophys. Res., 79 ( 7 ), 966 – 971, doi: 10.1029/JA079i007p00966.en_US
dc.identifier.citedreferenceSouthwood, D. J. ( 1976 ), A general approach to low‐frequency instability in the ring current plasma, J. Geophys. Res., 81, 3340 – 3348, doi: 10.1029/JA081i019p03340.en_US
dc.identifier.citedreferenceTakahashi, K., and B. J. Anderson ( 1992 ), Distribution of ULF energy (f < 80 mHz) in the inner magnetosphere: A statistical analysis of AMPTE CCE magnetic field data, J. Geophys. Res., 97 ( A7 ), 10,751 – 10,773.en_US
dc.identifier.citedreferenceTakahashi, K., R. W. McEntire, A. T. Y. Lui, and T. A. Potemra ( 1990 ), Ion flux oscillations associated with a radially polarized transverse Pc5 magnetic pulsation, J. Geophys. Res., 95 ( A4 ), 3717 – 3731.en_US
dc.identifier.citedreferenceTakahashi, K., R. E. Denton, R. R. Anderson, and W. J. Hughes ( 2004 ), Frequencies of standing Alfvn wave harmonics and their implication for plasma mass distribution along geomagnetic field lines: Statistical analysis of CRRES data, J. Geophys. Res., 109, A08202, doi: 10.1029/2003JA010345.en_US
dc.identifier.citedreferenceTakahashi, K., et al. ( 2011 ), Multisatellite observations of a giant pulsation event, J. Geophys. Res., 116, A11223, doi: 10.1029/2011JA016955.en_US
dc.identifier.citedreferenceVallat, C., et al. ( 2007 ), Ion multi‐nose structures observed by Cluster in the inner magnetosphere, Ann. Geophys., 25, 171 – 190.en_US
dc.identifier.citedreferenceWang, Y. F., and Q.‐G. Zong ( 2012 ), Study of the nose event on 11 April 2002 with UBK method, Sci. China Technol. Sci., 55, 1929 – 1942, doi: 10.1007/s11431‐012‐4862‐1.en_US
dc.identifier.citedreferenceWilson, M. E., T. K. Yeoman, L. J. Baddeley, and B. J. Kellet ( 2006 ), A statistical investigation of the invariant latitude dependence of unstable magnetospheric ion populations in relation to high m ULF wave generation, Ann. Geophys., 24, 3027 – 3040, doi: 10.5194/angeo‐24‐3027‐2006.en_US
dc.identifier.citedreferenceZong, Q.‐G., et al. ( 2009a ), Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt, J. Geophys. Res., 114, A10204, doi: 10.1029/2009JA014393en_US
dc.identifier.citedreferenceZong, Q.‐G., et al. ( 2009b ), Vortex‐like plasma flow structures observed by Cluster at the boundary of the outer radiation belt and ring current: A link between the inner and outer magnetosphere, J. Geophys. Res., 114, A10211, doi: 10.1029/2009JA014388.en_US
dc.identifier.citedreferenceCao, J.‐B., et al. ( 2008 ), Characteristics of middle‐to‐low latitude Pi2 excited by bursty bulk flows, J. Geophys. Res., 113, A07S15, doi: 10.1029/2007JA012629.en_US
dc.identifier.citedreferenceAnderson, B. J., M. J. Engebretson, S. P. Rounds, L. J. Zanetti, and T. A. Potemra ( 1990 ), A statistical study of Pc3‐5 pulsations observed by the AMPTE/CCE magnetic field experiment 1, Occurrence distributions, J. Geophys. Res., 95 ( A7 ), 10,495 – 10,523.en_US
dc.identifier.citedreferenceAngelopoulos, V. ( 2008 ), The THEMIS Mission, Space Sci. Rev., doi: 10.1007/s11214‐008‐9336‐1.en_US
dc.identifier.citedreferenceArthur, C. W., and R. L. McPherron ( 1981 ), The statistical character of Pc4 magnetic pulsations at synchronous orbit, J. Geophys. Res., 86 ( A3 ), 1325 – 1334.en_US
dc.identifier.citedreferenceAuster, H. U., et al. ( 2009 ), The THEMIS Fluxgate Magnetometer, Space science reviews, 141 ( 1‐4 ), 235 – 264.en_US
dc.identifier.citedreferenceBaddeley, L. J., T. K. Yeoman, D. M. Wright, K. J. Trattner, and B. J. Kellet ( 2004 ), A statistical study of unstable particle populations in the global ring current and their relation to the generation of high m ULF waves, Ann. Geophys., 22, 4229 – 4241.en_US
dc.identifier.citedreferenceBaddeley, L. J., T. K. Yeoman, and D. M. Wright ( 2005a ), HF Doppler sounder measurements of the ionospheric signatures of small scale ULF waves, Ann. Geophys., 23 ( 5 ), 1807 – 1820, doi: 10.5194/angeo‐23‐1807‐1820.en_US
dc.identifier.citedreferenceBaddeley, L. J., T. K. Yeoman, D. M. Wright, K. J. Trattner, and B. J. Kellet ( 2005b ), On the coupling between unstable magnetospheric particle populations and resonant high m ULF wave signatures in the ionosphere, Ann. Geophys., 23, 567 – 577, doi: 10.5194/angeo‐23‐567‐2005.en_US
dc.identifier.citedreferenceBaker, D. N., S. G. Kanekal, X. Li, S. P. Monk, J. Goldstein, and J. L. Burch ( 2004 ), An extreme distortion of the Van Allen belt arising from the/Hallowe’en/’solar storm in 2003. Nature 432 ( 7019 ), 878 – 881.en_US
dc.identifier.citedreferenceBonnell, J. W., F. S. Mozer, G. T. Delory, A. J. Hull, R. E. Ergun, C. M. Cully, V. Angelopoulos, and P. R. Harvey ( 2008 ), “ The electric field instrument (EFI) for THEMIS,” Space Science Reviews 141 ( 1‐4 ), 303 – 341.en_US
dc.identifier.citedreferenceCao, J.‐B., et al. ( 2010 ), Geomagnetic signatures of current wedge produced by fast flows in a plasma sheet, J. Geophys. Res., 115, A08205, doi: 10.1029/2009JA014891.en_US
dc.identifier.citedreferenceCarpenter, D. L., and J. Lemaire ( 2004 ), The plasmasphere boundary layer, Ann. Geophys., 22, 4291.en_US
dc.identifier.citedreferenceChen, L., and A. Hasegawa ( 1991 ), Kinetic theory of geomagnetic pulsations, 1, Internal excitation by energetic particles, J. Geophys. Res., 96 ( A2 ), 1503 – 1512.en_US
dc.identifier.citedreferenceCummings, W. D., R. J. O’Sullivan, and P. J. Jr. Coleman ( 1969 ), Standing Alfvén waves in the magnetosphere, J. Geophys. Res., 74 ( 3 ), 778 – 793.en_US
dc.identifier.citedreferenceDenton, R. E., K. Takahashi, I. A. Galkin, P. A. Nsumei, X. Huang, B. W. Reinisch, R. R. Anderson, M. K. Sleeper, and W. J. Hughes ( 2006 ), Distribution of density along magnetospheric field lines, J. Geophys. Res., 111, A04213, doi: 10.1029/2005JA011414.en_US
dc.identifier.citedreferenceDu A. M., et al. ( 2010 ), Experimental evidence of direct penetration of upstream ULF waves from the solar wind into the magnetosphere during the strong magnetic storm of November 9, 2004, Planet. Space Sci., 58 ( 7‐8 ), June 2010, 1040 – 1044.en_US
dc.identifier.citedreferenceFu, H. S., J. Tu, P. Song, J. B. Cao, B. W. Reinisch, and B. Yang ( 2010 ), The nightside‐to‐dayside evolution of the inner magnetosphere: Imager for Magnetopause‐to‐Aurora Global Exploration Radio Plasma Imager observations, J. Geophys. Res., 115, A04213, doi: 10.1029/2009JA014668.en_US
dc.identifier.citedreferenceHartinger, M., et al. ( 2011 ), Global energy transfer during a magnetospheric field line resonance, Geophys. Res. Lett., 38, L12101, doi: 10.1029/2011GL047846.en_US
dc.identifier.citedreferenceHughes, W. J., et al. ( 1978 ), Alfvén waves generated by an inverted plasma energy distribution, Nature, 275, 43 – 45, doi: 10.1038/275043a0.en_US
dc.identifier.citedreferenceKozlov, D. A., et al. ( 2006 ), The structure of standing Alfven waves in a dipole magnetosphere with moving plasma, Annales Geophysicae, 24 ( 1 ), 263 – 274.en_US
dc.identifier.citedreferenceLeonovich, A. S., et al. ( 2008 ), Standing Alfvén waves with m>> 1 in a dipole magnetosphere with moving plasma and aurorae, Adv. Space Res., 42 ( 5 ), 970 – 978.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.