Show simple item record

Focused Ultrasound Thermal Therapy Monitoring using Ultrasound, Infrared Thermal, and Photoacoustic Imaging Techniques.

dc.contributor.authorHsiao, Yi-Singen_US
dc.date.accessioned2013-09-24T16:01:37Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2013-09-24T16:01:37Z
dc.date.issued2013en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99827
dc.description.abstractFocused ultrasound (FUS) is a promising thermal treatment modality which deposits heat noninvasively in a confined tissue volume to treat localized diseased tissue or malignancy through hyperthermia or high temperature ablation. FUS compatible guiding and monitoring systems to provide real-time information on tissue temperature and/or status (e.g., native or necrotized) are important to ensure safe and effective treatment outcome; however, current development of such systems are restricted to ultrasound and magnetic resonance imaging (MRI). The work described in this dissertation represents efforts not only to explore new tools to evaluate current monitoring techniques but also to develop new FUS monitoring modalities. In the first study, a new evaluation platform for ultrasound thermometry using infrared (IR) thermography was developed and demonstrated using phantoms subjected to FUS heating, providing a fast calibration and validation tool with spatiotemporal temperature information unavailable with traditional thermocouple measurements. In the second study, IR thermography was investigated as a new tool for high temperature FUS ablation monitoring. The spatiotemporal temperature characteristics in correspondence to lesion formation and bubble activities were identified using simultaneous IR and bright-field imaging. Tissue-specific thermal damage threshold, which is critical for accurate estimation of tissue status based on temperature time history, was also obtained using the same system. In the final study, we developed a novel dual-wavelength photoacoustic (PA) sensing technique for monitoring tissue status during thermal treatments, which is capable of separating the two effects from temperature rise and changes in optical properties due to tissue alteration. Experimental validations of the theoretical derivation were carried out on ex-vivo cardiac tissue using water-bath heating on lesions generated by FUS. Future directions of research include in-vivo technique demonstration where effects such as blood perfusion on FUS heating need to be considered. When FUS operates in the non-ablative regime without causing irreversible changes in tissue, treatment monitoring techniques investigated in this study also have the potential to be translated into diagnostic tools.en_US
dc.language.isoen_USen_US
dc.subjectFocused Ultrasounden_US
dc.subjectThermal Therapyen_US
dc.subjectUltrasound Thermometryen_US
dc.subjectHIFU Ablationen_US
dc.subjectInfrared Thermographyen_US
dc.subjectPhotoacoustic Techniqueen_US
dc.titleFocused Ultrasound Thermal Therapy Monitoring using Ultrasound, Infrared Thermal, and Photoacoustic Imaging Techniques.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineBiomedical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberDeng, Cheri Xiaoyuen_US
dc.contributor.committeememberShih, Albert J.en_US
dc.contributor.committeememberFowlkes, J Brianen_US
dc.contributor.committeememberWang, Xuedingen_US
dc.contributor.committeememberXu, Zhenen_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99827/1/yising_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.