Show simple item record

Role of fluid and melt inclusion studies in geologic research

dc.contributor.authorKesler, S. E.en_US
dc.contributor.authorBodnar, R. J.en_US
dc.contributor.authorMernagh, T. P.en_US
dc.date.accessioned2013-11-01T19:01:08Z
dc.date.available2015-01-05T13:54:45Zen_US
dc.date.issued2013-11en_US
dc.identifier.citationKesler, S. E.; Bodnar, R. J.; Mernagh, T. P. (2013). "Role of fluid and melt inclusion studies in geologic research." Geofluids 13(4): 398-404.en_US
dc.identifier.issn1468-8115en_US
dc.identifier.issn1468-8123en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/100331
dc.description.abstractAlthough fluid inclusions were apparently known to early naturalists, actual research on fluid and melt inclusions began only in the mid‐1800s and grew very slowly for the next 100 years. R ussian scientists began systematic studies of inclusions in the 1930s, but it was not until about 1960 that publications mentioning or using fluid inclusions began to increase from a few each year to the present annual level of about 700. Early research focused on ore deposits, first on temperatures and salinities of ore fluids and then on their stable isotopic and major element compositions. Later work extended to fluids in sedimentary and metamorphic environments. Publications using or mentioning melt inclusions only began to increase in number in about 1980 and have grown to today's level of about 200 per year. Early work on melt inclusions focused on igneous rocks with an emphasis on immiscibility and volatile elements and then on rare elements. Recent research on both fluid and melt inclusions has taken advantage of single inclusion analytical methods to investigate speciation and partitioning in both natural and experimental magmatic and aqueous systems. Observations on fluid and melt inclusions began in the mid‐1800s, but research publications were rare until about 1960 for fluid inclusions and 1980 for melt inclusions. Currently, about 700 reports mentioning fluid inclusions and another 200 mentioning melt inclusions are published each year. Research has evolved from measurements on individual inclusions to analysis of bulk inclusions to present efforts to analyze individual natural and experimental inclusions and derive geochemical data and models from them.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherWilliam Godbiden_US
dc.subject.otherEvaporiteen_US
dc.subject.otherIntrusiveen_US
dc.subject.otherMelt Inclusionen_US
dc.subject.otherMetamorphicen_US
dc.subject.otherOre Depositen_US
dc.subject.otherPegmatiteen_US
dc.subject.otherVolcanicen_US
dc.subject.otherFluid Inclusionen_US
dc.titleRole of fluid and melt inclusion studies in geologic researchen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100331/1/gfl12055.pdf
dc.identifier.doi10.1111/gfl.12055en_US
dc.identifier.sourceGeofluidsen_US
dc.identifier.citedreferenceRoedder E, Skinner BJ ( 1968 ) Experimental evidence that fluid inclusions do not leak. Economic Geology, 63, 715 – 30.en_US
dc.identifier.citedreferenceSmith FG ( 1953 ) Historical Development of Inclusion Thermometry. University of Toronto Press, Toronto, Canada.en_US
dc.identifier.citedreferenceSobolev VS, Kostyuk VP ( 1975 ) Magmatic crystallization based on a study of melt inclusions. Fluid Inclusion Research, 9, 182 – 235.en_US
dc.identifier.citedreferenceSorby HC ( 1857 ) On some peculiarities in the microscopical structure of crystals, applicable to the determination of the aqueous or igneous origin of minerals and rocks. Philosophical Magazine, 4–15, 152 – 4.en_US
dc.identifier.citedreferenceSorby HC ( 1858 ) On the microscopic structures of crystals, indicating the origin of minerals and rocks. Journal of the Geological Society of London, 14, 453 – 500.en_US
dc.identifier.citedreferenceSorby HC, Butler PJ ( 1869 ) On the structure of rubies, sapphires, diamonds and some other minerals. Proceedings Royal Society, 17, 291 – 303.en_US
dc.identifier.citedreferenceSteele‐MacInnis M, Esposito R, Bodnar RJ ( 2011 ) Thermodynamic model for the effect of post‐entrapment crystallization on the H 2 O‐CO 2 systematics of volatile‐saturated silicate melt inclusions. Journal of Petrology, 52, 2461 – 82.en_US
dc.identifier.citedreferenceSterner SM, Bodnar RJ ( 1984 ) Synthetic fluid inclusions in natural quartz; 1, Compositional types synthesized and applications to experimental geochemistry. Geochimica et Cosmochimica Acta, 48, 2659 – 68.en_US
dc.identifier.citedreferenceSterner SM, Hall DL, Keppler H ( 1995 ) Compositional re‐equilibration of fluid inclusions in quartz. Contributions to Mineralogy and Petrology, 119, 1 – 15.en_US
dc.identifier.citedreferenceStix J, Graham LD ( 1996 ) Gas saturation and evolution of volatile and light lithophile elements in the Bandelier magma chamber between two caldera‐forming eruptions. Journal of Geophysical Research, 101 B11, 25181 – 96.en_US
dc.identifier.citedreferenceStudent JJ, Bodnar RJ ( 2004 ) Silicate melt inclusion in porphyry copper deposits. identification and homogenization behavior. Canadian Mineralogist, 42, 1583 – 99.en_US
dc.identifier.citedreferenceTimofeef MN, Lowenstein TK, Marins da Silva MA, Harris NB ( 2006 ) Secular variation in the major‐ion chemistry of seawater. Evidence from fluid inclusion in Cretaceous halites. Geochimica Cosmochimica Acta, 70, 1977 – 94.en_US
dc.identifier.citedreferenceTouret J ( 1981 ) Fluid inclusion in high‐grade metamorphic rocks. Mineralogical Society of America Short Course Handbook, 6, 182 – 208.en_US
dc.identifier.citedreferenceUlrich T, Günther D, Heinrich CA ( 1999 ) Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature, 399, 676 – 9.en_US
dc.identifier.citedreferenceUlrich T, Günther D, Heinrich CA ( 2001 ) The evolution of a porphyry Cu‐Au deposit, based on LA‐ICPMS analysis of fluid inclusions. Bajo de la Alumbrera, Argentina. Economic Geology, 96, 1743 – 74.en_US
dc.identifier.citedreferenceWatson EB, Sneeringer MA, Ross A ( 1982 ) Diffusion of dissolved carbonate in magmas. experimental results and applications. Earth and Planetary Science Letters, 61, 346 – 58.en_US
dc.identifier.citedreferenceWayne DM, Miller MF, Scrivener RC, Banks DA ( 1996 ) U‐Pb and Rb‐Sr isotopic systematics of fluids associated with mineralization of the Dartmoor granite, southwest England. Geochimica Cosmochimica Acta, 60, 653 – 66.en_US
dc.identifier.citedreferenceWebster JD, Burt DM, Aguillon RA ( 1996 ) Volatile and lithophile trace‐element geochemistry of Mexican tin rhyolite magmas deduced from melt inclusions. Geochimica Cosmochimica Acta, 60, 3267 – 83.en_US
dc.identifier.citedreferenceWebster JD, Thomas R, Rhede D, Foerster H‐J, Seltmann R ( 1997 ) Melt inclusions in quartz from an evolved peraluminous pegmatite; geochemical evidence for strong tin enrichment in fluorine‐rich and phosphorus‐rich residual liquids. Geochimica et Cosmochimica Acta, 61, 2589 – 604.en_US
dc.identifier.citedreferenceWhite DE ( 1957 ) Magmatic, connate, and metamorphic waters. Bulletin of the Geological Society of America, 68, 1659 – 82.en_US
dc.identifier.citedreferenceWhite DE ( 1974 ) Diverse origins of hydrothermal ore fluids. Economic Geology, 69, 954 – 73.en_US
dc.identifier.citedreferenceWilson JYJ, Kesler SE, Cloke PL, Kelly WC ( 1980 ) Fluid inclusion geochemistry of the Granisle and Bell porphyry copper deposits, British Columbia. Economic Geology, 75, 45 – 61.en_US
dc.identifier.citedreferenceXie Y, Hou Z, Yin S, Dominy SC, Xu J ( 2009 ) Continuous carbonatitic melt‐fluid evolution of a REE mineralization system; evidence from inclusions in the Maoniuping REE deposit, western Sichuan, China. Ore Geology Reviews, 36, 90 – 105.en_US
dc.identifier.citedreferenceZakharchenko AI ( 1950 ) Study of liquid inclusions in quartz (in Russian). L'vov Geol. Obshch. Mineral. Sbornik, 4, 167 – 87.en_US
dc.identifier.citedreferenceZakharchenko AI ( 1968 ) Gas‐solid inclusions of residual melts in granites, aplites, and pegmatites and results of their investigation. Vses. Nauch.‐Issl. Inst. Sinteza Mineral, Syr'ya, Moscow (Referenced in Georef).en_US
dc.identifier.citedreferenceZirkel F ( 1873 ) Die mikroscopische Beschaftenheit der Mineralien und Gesteine. Wilhelm Englemann, Leipzig.en_US
dc.identifier.citedreferenceAllan MM, Yardley BWD, Forbes LJ, Shmulovich KI, Banks DA, Shepherd TJ ( 2005 ) Validation of LA‐ICP‐MS fluid inclusion analysis with synthetic fluid inclusions. American Mineralogist, 90, 1767 – 75.en_US
dc.identifier.citedreferenceAnderson AT Jr ( 1991 ) Hourglass inclusions: theory and application to the Bishop rhyolitic tuff. American Mineralogist, 76, 530 – 47.en_US
dc.identifier.citedreferenceAnderson AT Jr, Newman S, Williams SN, Druitt TH, Skirius C, Stolper E ( 1989 ) H 2 O, CO 2, Cl and gas in Plinian and ash‐flow Bishop rhyolite. Geology, 17, 221 – 5.en_US
dc.identifier.citedreferenceAppold MS, Numelin TJ, Shepherd TJ, Chenery SR ( 2004 ) Limits on the metal content of fluid inclusions in gangue minerals from the Viburnum Trend, Southeast Missouri, determined by laser ablation ICP‐MS. Economic Geology, 99, 185 – 98.en_US
dc.identifier.citedreferenceAudetat A ( 2010 ) Source and evolution of molybdenum in the porphyry Mo(‐Nb) deposit at Cave Peak, Texas. Journal of Petrology, 51, 1739 – 60.en_US
dc.identifier.citedreferenceAudétat A, Günther D, Heinrich CA ( 2000a ) Causes for large‐scale metal zonation around mineralized plutons: fluid inclusion LA‐ICP‐MS evidence from the Mole Granite, Australia. Economic Geology, 95, 1563 – 81.en_US
dc.identifier.citedreferenceAudétat A, Günther D, Heinrich CA ( 2000b ) Magmatic‐hydrothermal evolution in a fractionating granite: a microchemical study of the Sn‐W‐F mineralized Mole Granite (Australia). Geochimica et Cosmochimica Acta, 64, 3373 – 93.en_US
dc.identifier.citedreferenceAulstead KL, Spencer RJ, Krouse RH ( 1988 ) Fluid inclusion and isotopic evidence on dolomitization, Devonian of Western Canada. Geochimica et Cosmochimica Acta, 52, 1027 – 35.en_US
dc.identifier.citedreferenceAyora C, Garcia‐Veigas J, Pueyo J‐J ( 1994 ) The chemical and hydrological evolution of an ancient potash‐forming evaporite basin as constrained by mineral sequence, fluid inclusion composition, and numerical simulation. Geochimica et Cosmochimica Acta, 58, 3379 – 94.en_US
dc.identifier.citedreferenceBacon CR ( 1989 ) Crystallization of accessory phases in magmas by local saturation adjacent to phenocrysts. Geochimica et Cosmochimica Acta, 53, 1055 – 66.en_US
dc.identifier.citedreferenceBell AS, Simon AC, Guilong M ( 2011 ) Gold solubility in oxidized and reduced, water‐saturated mafic melt. Geochimica et Cosmochimica Acta, 75, 1718 – 32.en_US
dc.identifier.citedreferenceBlamey NJF ( 2012 ) Composition and evolution of crustal, geothermal and hydrothermal fluids interpreted using quantitative fluid inclusion gas analysis. Journal of Geochemical Exploration, 116–117, 17 – 27.en_US
dc.identifier.citedreferenceBodnar RJ, Beane RE ( 1980 ) Temporal and spatial variations in hydrothermal fluid characteristics during vein filling in preore cover overlying deeply buried porphyry copper‐type mineralization at Red Mountain, Arizona. Economic Geology, 75, 876 – 93.en_US
dc.identifier.citedreferenceBodnar RJ, Sterner SM ( 1985 ) Synthetic fluid inclusions in natural quartz. II. Application to PVT studies. Geochimica et Cosmochimica Acta, 49, 1855 – 9.en_US
dc.identifier.citedreferenceBodnar RJ, Student JJ ( 2006 ) Melt inclusions in plutonic rocks: petrography and microthermometry. Mineralogical Association of Canada Short Course, 36, 1 – 25.en_US
dc.identifier.citedreferenceBodnar RJ, Burnham CW, Sterner SM ( 1985 ) Synthetic fluid inclusion in natural quartz; III, Determination of phase equilibrium properties in the system H 2 O‐NaCl to 1000 degrees C and 1500 bars. Geochimica et Cosmochimica Acta, 49, 1861 – 73.en_US
dc.identifier.citedreferenceBoyle R ( 1672 ) An Essay About the Origin and Virtues of Gems. William Godbid, London.en_US
dc.identifier.citedreferenceBrewster D ( 1823 ) On the existence of two new fluids in the cavities of minerals, which are immiscible, and possess remarkable physical properties. Transactions Royal Society of Edinburgh, 10, 1 – 14.en_US
dc.identifier.citedreferenceBurruss RC, Cercone KR, Harris PM ( 1983 ) Fluid inclusion petrography and tectonic‐burial history of the Al Ali No. 2 well. Evidence for the timing of diagenesis and oil migration, northern Oman Foredeep. Geology, 11, 567 – 70.en_US
dc.identifier.citedreferenceCameron EN, Rowe RB, Weis PL ( 1951 ) Fluid inclusion in beryl and quartz from pegmatites of the Middletown District, Connecticut (Part 1). American Mineralogist, 36, 11 – 2.en_US
dc.identifier.citedreferenceCampbell AR, Rye D, Petersen U ( 1984 ) Internal features of minerals seen with the infrared microscope. Economic Geology, 79, 1387 – 1392.en_US
dc.identifier.citedreferenceChambefort I, Rae A, Bignall G ( 2012 ) Direct magmatic input in geothermal systems of the Taupo Volcanic Zone. Mineralogical Magazine, 76, 1 – 20.en_US
dc.identifier.citedreferenceChanner DMDeR, de Ronde CEJ, Spooner ETC. ( 1997 ) The Cl − ‐Br − ‐I − composition of similar to 3.23 Ga modified seawater. implications for the geological evolution of ocean halide chemistry. Earth and Planetary Science Letters, 3–4, 325 – 35.en_US
dc.identifier.citedreferenceChristensen JN, Halliday AN ( 1996 ) Rb‐Sr ages and Nd isotopic compositions of melt inclusions from the Bishop Tuff and the generation of silicic magma. Earth and Planetary Science Letters, 144, 547 – 61.en_US
dc.identifier.citedreferenceClocchiatti R ( 1975 ) Les inclusions vitreuses des cristaux de quartz. Étude optique, thermo‐optique et chimique. Applications geologiques. [Glass (melt) inclusions in quartz. Optical, microthermometric and chemical study. Geologic applications]. Memoires de la Société Géologique de France, LIV, 122, 1 – 96 [in French].en_US
dc.identifier.citedreferenceCrawford ML ( 1981 ) Fluid inclusions in metamorphic rocks; low and medium grade. Mineralogical Society of American Short Course Handbook, 6, 157 – 81.en_US
dc.identifier.citedreferenceDanyushevsky LV, McNeill AW, Sobolev AV ( 2002 ) Experimental and petrological studies of melt inclusions in phenocrysts from mantle‐derived magmas: an overview of techniques, advantages and complications. Chemical Geology, 183, 5 – 24.en_US
dc.identifier.citedreferenceDavy H ( 1822 ) On the state of water and aeriform matter in cavities found in certain crystals. Philosophical Transactions Royal Society of London, 2, 367 – 76.en_US
dc.identifier.citedreferenceDietrich A, Lehmann B, Wallianos A ( 2000 ) Bulk rock and melt inclusion geochemistry of Bolivian tin porphyry systems. Economic Geology, 95, 313 – 26.en_US
dc.identifier.citedreferenceDilles JH, Einaudi MT ( 1992 ) Wall‐rock alteration and hydrothermal flow paths about the Ann‐Mason porphyry copper deposit, Nevada; a 6‐km vertical reconstruction. Economic Geology, 87, 963 – 2001.en_US
dc.identifier.citedreferenceDunbar NW, Hervig RL ( 1992 ) Petrogenesis and volatile stratigraphy of the Bishop Tuff; evidence from melt inclusion analysis. Journal of Geophysical Research, 97, B11, 15, 129–15, 150.en_US
dc.identifier.citedreferenceDunbar NW, Hervig RL, Kyle PR ( 1989 ) Determination of pre‐eruptive H 2 O, F, and Cl contents of silicic magmas using melt inclusions. examples from Taupo volcanic center, New Zealand. Bulletin of Volcanology, 51, 177 – 84.en_US
dc.identifier.citedreferenceDutkiewicz A, Volk H, George SC, Ridley J, Buick R ( 2006 ) Biomarkers from Huronian oil‐bearing fluid inclusions: an uncontaminated record of life before the Great Oxidation Event. Geology, 34, 437 – 40.en_US
dc.identifier.citedreferenceErmakov NP ( 1950 ) Research on the nature of mineral‐forming solutions. University of Kharkov Press, Kharkov, 460 p. translated in Ermakov NP (1965) International Series of Monographs in Earth Sciences, 22, Pergamon, New York, 743 p.en_US
dc.identifier.citedreferenceErwood RJ, Kesler SE, Cloke PL ( 1979 ) Compositionally distinct, saline hydrothermal solutions, Naica Mine, Chihuahua, Mexico. Economic Geology, 74, 95 – 106.en_US
dc.identifier.citedreferenceFrank MR, Simon AC, Pettke T, Candela PA, Piccoli PM ( 2011 ) Gold and copper partitioning in magmatic‐hydrothermal systems at 800 degrees C and 100 MPa. Geochimica Cosmochimica Acta, 75, 2470 – 82.en_US
dc.identifier.citedreferenceFrezzotti M‐L ( 1992 ) Magmatic immiscibility and fluid phase evolution in the Mount Genis granite (southeastern Sardinia, Italy). Geochimica Cosmochimica Acta, 56, 21 – 33.en_US
dc.identifier.citedreferenceFrezzotti ML, Tecce F, Casagli A ( 2012 ) Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 1 – 20.en_US
dc.identifier.citedreferenceGoldstein RH, Reynolds TJ ( 1994 ) Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course Notes, 31, 199.en_US
dc.identifier.citedreferenceHall WE, Friedman I ( 1963 ) Composition of fluid inclusions, Cave‐in‐Rock fluorite district, Illinois and Upper Mississippi Valley zinc‐lead district. Economic Geology, 58, 886 – 911.en_US
dc.identifier.citedreferenceHall DL, Sterner SM ( 1993 ) Preferential water loss from synthetic fluid inclusion. Contributions to Mineralogy and Petrology, 114, 489 – 500.en_US
dc.identifier.citedreferenceHall DL, Sterner SM ( 1995 ) Experimental diffusion of hydrogen into synthetic fluid inclusion in quartz. Journal of Metamorphic Geology, 13, 345 – 55.en_US
dc.identifier.citedreferenceHarris D, Anderson AT Jr ( 1984 ) Volatiles H 2 O, CO 2, and Cl in a subduction related basalt. Contributions to Mineralogy and Petrology, 87, 120 – 8.en_US
dc.identifier.citedreferenceHeinrich CA, Ryan CG, Mernagh TP, Eadington PJ ( 1992 ) Segregation of ore metals between magmatic brine and vapor. a fluid inclusion study using PIXE microanalysis. Economic Geology, 87, 1566 – 83.en_US
dc.identifier.citedreferenceHeinrich CA, Pettke T, Halter WE, Aigner‐Torres M, Audétat A, Günther D, Hattendorf B, Bleiner D, Guillong M, Horn I ( 2003 ) Quantitative multi‐element analysis of minerals, fluid and melt inclusions by laser‐ablation inductively‐coupled‐plasma mass‐spectrometry. Geochimica et Cosmochimica Acta, 67, 3473 – 97.en_US
dc.identifier.citedreferenceHollister LS, Crawford ML, Editors ( 1981 ) Fluid Inclusions. Applications to Petrology. Mineralogic Association of Canada, Ontario, Short Course Handbook, 6, 304 p.en_US
dc.identifier.citedreferenceIngerson E ( 1947 ) Liquid inclusions in geologic thermometry. American Mineralogist, 32, 375 – 88.en_US
dc.identifier.citedreferenceKamilli J, Ohmoto H ( 1977 ) Paragenesis, zoning, fluid inclusion, and isotopic studies of the Finlandia Vein, Colqui District, central Peru. Economic Geology, 72, 950 – 82.en_US
dc.identifier.citedreferenceKelly WC, Turneaure FS ( 1970 ) Mineralogy, paragenesis and geothermometry of the tin and tungsten deposits of the eastern Andes, Bolivia. Economic Geology, 65, 609 – 80.en_US
dc.identifier.citedreferenceKendrick MA, Honda M, Walshe J, Petersen K ( 2011 ) Fluid sources and the role of abiogenic‐CH 4 in Archean gold mineralization: constraints from noble gases and halogens. Precambrian Research, 189, 313 – 27.en_US
dc.identifier.citedreferenceKennedy GC ( 1950 ) “Pneumatolysis” and the liquid inclusion method of geologic thermometry. Economic Geology, 45, 533 – 47.en_US
dc.identifier.citedreferenceKouzamanov K, Pettke T, Heinrich CA ( 2010 ) Direct analysis of ore‐precipitating fluids: combined IR microscopy and LA‐ICP‐MS study of fluid inclusions in opaque ore minerals. Economic Geology, 105, 351 – 73.en_US
dc.identifier.citedreferenceKovalenko VI, Kovalenko NI, Didier J ( 1984 ) Problems of the origin, ore‐bearing and evolution of rare‐metal granitoids. Physics of the Earth and Planetary Interiors, 35, 51 – 62.en_US
dc.identifier.citedreferenceLemmlein GG ( 1956 ) Formation of fluid inclusions and their use in geological thermometry. Geochemistry, 6, 630 – 42.en_US
dc.identifier.citedreferenceLin F, Bodnar RJ ( 2010 ) Synthetic fluid inclusion XVIII; experimental determination of the PVTX properties of H2O‐CH4 to 500 C, 3 kbar and XCH4 ≤ 4 mole%. Geochimica Cosmochimica Acta, 74, 3260 – 73.en_US
dc.identifier.citedreferenceLindgren W ( 1905 ) The copper deposits of the Clifton‐Morenci district, Arizona. U.S. Geological Survey Professional Paper 43 375.en_US
dc.identifier.citedreferenceLowenstern JB ( 1995 ) Applications of silicate melt inclusions to the study of magmatic volatiles. In: Thompson, J.F.H. (ed.) Magmas, Fluid and Ore Deposits. Mineralogical Association of Canada Short Course, 23, 71 – 99.en_US
dc.identifier.citedreferenceLowenstern JB ( 2003 ) Melt inclusions come of age. Volatiles, Volcanoes, and Sorby's Legacy, In: Melt Inclusions in Volcanic Systems. Methods, Applications and Problems. Developments in Volcanology 5 (eds de Vivo B, Bodnar RJ ), pp. 1 – 22. Elsevier Press, Amsterdam.en_US
dc.identifier.citedreferenceLowenstern JB, Mahood GA ( 1991 ) New data on magmatic H 2 O contents of pantellerites, with implications for petrogenesis and eruptive dynamics at Pantelleria. Bulletin of Volcanology, 54, 78 – 83.en_US
dc.identifier.citedreferenceMachel H‐G ( 1987 ) Saddle dolomite as a by‐product of chemical compaction and thermochemical sulfate reduction. Geology, 15, 936 – 40.en_US
dc.identifier.citedreferenceMcLimans RK ( 1981 ) Applications of fluid inclusion studies to reservoir diagenesis and petroleum migration; Smackover Formation, U.S. Gulf Coast, and Fateh Field, Dubai. AAPG Bulletin, 65, 957.en_US
dc.identifier.citedreferenceMcPhie J, Kamenetsky V, Allen S, Ehrig K, Agangi A, Bath A ( 2011 ) The fluorine link between a supergiant ore deposit and a silicic large igneous province. Geology, 39, 1003 – 6.en_US
dc.identifier.citedreferenceMetrich N, Clocchiatti R ( 1989 ) Melt inclusion investigation of the volatile behaviour in historic alkali basaltic magmas of Etna. Bulletin of Volcanology, 51, 185 – 98.en_US
dc.identifier.citedreferenceNaumov VB, Kovalenko VI, Ivanova GF, Vladykin NV ( 1977 ) The genesis of topaz according to the data on microinclusions. Geochemistry International, 14.2, 1 – 8.en_US
dc.identifier.citedreferenceNaumov VB, Prokof'ev VYu, Vapnik EA ( 2013 ) Studies of microorganisms in fluid inclusions in natural quartz. Geochemistry International, 51, 417 – 20.en_US
dc.identifier.citedreferenceNewhouse WH ( 1932 ) The composition of vein solutions as shown by liquid inclusions in minerals. Economic Geology, 27, 419 – 36.en_US
dc.identifier.citedreferenceNewhouse WH ( 1933 ) The temperature of formation of the Mississippi Valley lead, zinc deposits. Economic Geology, 28, 744 – 50.en_US
dc.identifier.citedreferencePhillips JA ( 1875 ) The rocks of the mining districts of Cornwall and their relations to metalliferous deposits. Geological Society of London Quarterly Journal, 31, 319 – 345.en_US
dc.identifier.citedreferenceQin C, Qiu Y, Zhou G, Wang Z, Zhang T ( 2007 ) Fluid inclusion study of carbonatite dykes/veins and ore‐hosted dolostone at the Bayan Obo ore deposit. Yanshi Xuebao=Acta Petrologica Sinica, 23, 161 – 8.en_US
dc.identifier.citedreferenceReyf FG ( 1997 ) Direct evolution of W‐rich brines from crystallizing melt within the Mariktikan granite pluton, west Transbaikalia. Mineralium Deposita, 32, 475 – 90.en_US
dc.identifier.citedreferenceRichard A, Cauzid J, Cathelineau M, Boiron M‐C, Mercadier J, Cuney M ( 2012 ) Synchrotron XRF and XANES investigation of uranium speciation and element distribution in fluid inclusions from unconformity‐related uranium deposits. Geofluids, 13, 101 – 11.en_US
dc.identifier.citedreferenceRobert F, Kelly WC ( 1983 ) Ore‐forming fluids in archean gold‐bearing quartz veins at the Sigma Mine, Abitibi Greenstone Belt, Quebec, Canada. Economic Geology, 82, 1464 – 82.en_US
dc.identifier.citedreferenceRoedder E ( 1962 ) Studies of fluid inclusions I: low temperature application of a dual‐purpose freezing and heating stage. Economic Geology, 57, 1045 – 61.en_US
dc.identifier.citedreferenceRoedder E ( 1963 ) Studies of fluid inclusions II: freezing data and their interpretation. Economic Geology, 58, 167 – 211.en_US
dc.identifier.citedreferenceRoedder E ( 1967 ) Environment of deposition of stratiform (Mississippi Valley type) ore deposits from studies of fluid inclusions in J.S. Brown, ed, Genesis of Stratiform Lead Zinc Barite Flourite Deposits (Mississippi Valley Type Deposits). Economic Geology, 3, 349 – 63.en_US
dc.identifier.citedreferenceRoedder E ( 1971 ) Fluid inclusion studies on the porphyry‐type ore deposits at Bingham, Utah, Butte, Montana and Climax Colorado. Economic Geology, 66, 98 – 120.en_US
dc.identifier.citedreferenceRoedder E ( 1984 ) Reviews in Mineralogy, Mineralogical Society of America 12, 646 p.en_US
dc.identifier.citedreferenceRoedder E, Coombs DS ( 1967 ) Immiscibility in granitic melts, indicated by fluid inclusions in ejected granitic blocks from Ascension Island. Journal of Petrology, 8, 417 – 51.en_US
dc.identifier.citedreferenceRoedder E, Weiblen PW ( 1970 ) Silicate liquid immiscibility in lunar magmas, evidenced by melt inclusion in lunar rocks. Science, 167, 641 – 4.en_US
dc.identifier.citedreferenceRoedder E, Weiblen PW ( 1971 ) Petrology of silicate melt inclusions, Apollo 11 and Apollo 12 and terrestrial equivalents, in Proc. Lunar Science Conf., 2nd Proc. v. 1. Geochimica Cosmochimica Acta, 2, 507 – 28.en_US
dc.identifier.citedreferenceRoggensack K, Hervig RL, McKnight SB, Williams SN ( 1997 ) Explosive basaltic volcanism from Cerro Negro volcano. Influence of volatiles on eruptive style. Science, 277, 1639 – 42.en_US
dc.identifier.citedreferenceRye RO, O'Neil JR ( 1968 ) The O 18 Content of Water in Primary Fluid Inclusions from Providencia, North‐Central Mexico. Economic Geology, 63, 232 – 8.en_US
dc.identifier.citedreferenceSimon A ( 2003 ) Experimental determination of Au solubility in rhyolite melt and magnetite; constraint on magmatic Au budgets. American Mineralogist, 88, 1644 – 51.en_US
dc.identifier.citedreferenceSkinner BJ ( 1953 ) Some considerations regarding liquid inclusions as geologic thermometers. Economic Geology, 48, 541 – 50.en_US
dc.identifier.citedreferenceSmith FG ( 1952 ) Decrepitation characteristics of garnet. American Mineralogist, 37, 470 – 91.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.