Show simple item record

Stochastic assessment of climate impacts on hydrology and geomorphology of semiarid headwater basins using a physically based model

dc.contributor.authorFrancipane, A.en_US
dc.contributor.authorFatichi, S.en_US
dc.contributor.authorIvanov, V. Y.en_US
dc.contributor.authorNoto, L. V.en_US
dc.date.accessioned2015-05-04T20:36:40Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-03en_US
dc.identifier.citationFrancipane, A.; Fatichi, S.; Ivanov, V. Y.; Noto, L. V. (2015). "Stochastic assessment of climate impacts on hydrology and geomorphology of semiarid headwater basins using a physically based model." Journal of Geophysical Research: Earth Surface 120(3): 507-533.en_US
dc.identifier.issn2169-9003en_US
dc.identifier.issn2169-9011en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111188
dc.description.abstractHydrologic and geomorphic responses of watersheds to changes in climate are difficult to assess due to projection uncertainties and nonlinearity of the processes that are involved. Yet such assessments are increasingly needed and call for mechanistic approaches within a probabilistic framework. This study employs an integrated hydrology‐geomorphology model, the Triangulated Irregular Network‐based Real‐time Integrated Basin Simulator (tRIBS)‐Erosion, to analyze runoff and erosion sensitivity of seven semiarid headwater basins to projected climate conditions. The Advanced Weather Generator is used to produce two climate ensembles representative of the historic and future climate conditions for the Walnut Gulch Experimental Watershed located in the southwest U.S. The former ensemble incorporates the stochastic variability of the observed climate, while the latter includes the stochastic variability and the uncertainty of multimodel climate change projections. The ensembles are used as forcing for tRIBS‐Erosion that simulates runoff and sediment basin responses leading to probabilistic inferences of future changes. The results show that annual precipitation for the area is generally expected to decrease in the future, with lower hourly intensities and similar daily rates. The smaller hourly rainfall generally results in lower mean annual runoff. However, a non‐negligible probability of runoff increase in the future is identified, resulting from stochastic combinations of years with low and high runoff. On average, the magnitudes of mean and extreme events of sediment yield are expected to decrease with a very high probability. Importantly, the projected variability of annual sediment transport for the future conditions is comparable to that for the historic conditions, despite the fact that the former account for a much wider range of possible climate “alternatives.” This result demonstrates that the historic natural climate variability of sediment yield is already so high, that it is comparable to the variability for a projected and highly uncertain future. Additionally, changes in the scaling relationship between specific sediment yield/runoff and drainage basin area are detected.Key PointsHillslope erosion and runoff are simulated with a hydrogeomorphic modelA stochastic approach is used to assess change in runoff and sediment yieldStochastic variability makes more uncertain sediment yield than runoff changesen_US
dc.publisherCambridge Univ. Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othererosionen_US
dc.subject.otherclimate impactsen_US
dc.subject.othergeomorphologyen_US
dc.subject.othermodelingen_US
dc.titleStochastic assessment of climate impacts on hydrology and geomorphology of semiarid headwater basins using a physically based modelen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111188/1/jgrf20370-sup-0003-TableS2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111188/2/jgrf20370-sup-0001-Readme.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111188/3/jgrf20370-sup-0002-TableS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111188/4/jgrf20370.pdf
dc.identifier.doi10.1002/2014JF003232en_US
dc.identifier.sourceJournal of Geophysical Research: Earth Surfaceen_US
dc.identifier.citedreferenceRutter, A. J., P. C. Robins, A. J. Morton, and K. A. Kershaw ( 1972 ), Predictive model of rainfall interception in forests. 1. Derivation of model from observations in a plantation of corsican pine, Agric. Meteorol., 9 ( 5–6 ), 367 – 384.en_US
dc.identifier.citedreferenceTebaldi, C., R. L. Smith, D. Nychka, and L. O. Mearns ( 2005 ), Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles, J. Clim., 18 ( 10 ), 1524 – 1540, doi: 10.1175/Jcli3363.1.en_US
dc.identifier.citedreferenceTemme, A. J. A. M., J. E. M. Baartman, and J. M. Schoorl ( 2009 ), Can uncertain landscape evolution models discriminate between landscape responses to stable and changing future climate? A millennial‐scale test, Global Planet. Change, 69 ( 1–2 ), 48 – 58, doi: 10.1016/j.gloplacha.2009.08.001.en_US
dc.identifier.citedreferenceTucker, G. E., and R. L. Bras ( 2000 ), A stochastic approach to modeling the role of rainfall variability in drainage basin evolution, Water Resour. Res., 36 ( 7 ), 1953 – 1964, doi: 10.1029/2000WR900065.en_US
dc.identifier.citedreferenceTucker, G. E., and R. Slingerland ( 1997 ), Drainage basin responses to climate change, Water Resour. Res., 33 ( 8 ), 2031 – 2047, doi: 10.1029/97WR00409.en_US
dc.identifier.citedreferenceTucker, G. E., S. T. Lancaster, N. M. Gasparini, and R. L. Bras ( 2001a ), The Channel‐Hillslope Integrated Landscape Development Model (CHILD), in Landscape Erosion and Evolution Modeling, edited by R. Harmon and W. Doe III, pp. 349 – 388, Springer.en_US
dc.identifier.citedreferenceTucker, G. E., S. T. Lancaster, N. M. Gasparini, R. L. Bras, and S. M. Rybarczyk ( 2001b ), An object‐oriented framework for distributed hydrologic and geomorphic modeling using triangulated irregular networks, Comput. Geosci., 27 ( 8 ), 959 – 973, doi: 10.1016/S0098-3004(00)00134-5.en_US
dc.identifier.citedreferencevan Balen, R. T., F. S. Busschers, and G. E. Tucker ( 2010 ), Modeling the response of the Rhine–Meuse fluvial system to Late Pleistocene climate change, Geomorphology, 114 ( 3 ), 440 – 452, doi: 10.1016/j.geomorph.2009.08.007.en_US
dc.identifier.citedreferenceVan De Wiel, M. J., T. J. Coulthard, M. G. Macklin, and J. Lewin ( 2007 ), Embedding reach‐scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model, Geomorphology, 90 ( 3–4 ), 283 – 301, doi: 10.1016/j.geomorph.2006.10.024.en_US
dc.identifier.citedreferenceVivoni, E. R., V. Y. Ivanov, R. L. Bras, and D. Entekhabi ( 2004 ), Generation of triangulated irregular networks based on hydrological similarity, J. Hydrol. Eng., 9 ( 4 ), 288 – 302, doi: 10.1061/(Asce)1084-0699(2004)9:4(288).en_US
dc.identifier.citedreferencevon Werner, M. ( 1995 ), GIS‐orientierte Methoden der digitalen Reliefanalyse zur Modellierung von Bodenerosion in kleinen Einzugsgebieten.en_US
dc.identifier.citedreferenceWalling, D. E. ( 1983 ), The sediment delivery problem, J. Hydrol., 65 ( 1–3 ), 209 – 237, doi: 10.1016/0022-1694(83)90217-2.en_US
dc.identifier.citedreferenceWalling, D. E., and A. H. A. Kleo ( 1979 ), Sediment yields of rivers in areas of low precipitation: A global view, in The Hydrology of Areas of Low Precipitation: Proceedings of an International Symposium, edited by I. A. O. H. Sciences, pp. 479 – 493, IAHS‐AISH, Exeter, U. K., 15–19 July 1996. [Available at https://books.google.it/books?id=bZ-ufVQV5yAC&dq=Sediment+yields+of+rivers+in+areas+of+low+precipitation:+a+global+view&hl=it&source=gbs_navlinks_s.]en_US
dc.identifier.citedreferenceWang, H., R. Fu, A. Kumar, and W. H. Li ( 2010 ), Intensification of summer rainfall variability in the southeastern United States during recent decades, J. Hydrometeorol., 11 ( 4 ), 1007 – 1018, doi: 10.1175/2010jhm1229.1.en_US
dc.identifier.citedreferenceWelsh, K. E., J. A. Dearing, R. C. Chiverrell, and T. J. Coulthard ( 2009 ), Testing a cellular modelling approach to simulating late‐Holocene sediment and water transfer from catchment to lake in the French Alps since 1826, Holocene, 19 ( 5 ), 785 – 798, doi: 10.1177/0959683609105303.en_US
dc.identifier.citedreferenceWeltz, M. A., J. C. Ritchie, and H. D. Fox ( 1994 ), Comparison of laser and field measurements of vegetation height and canopy cover, Water Resour. Res., 30 ( 5 ), 1311 – 1319, doi: 10.1029/93WR03067.en_US
dc.identifier.citedreferenceWicks, J. M., and J. C. Bathurst ( 1996 ), SHESED: A physically based, distributed erosion and sediment yield component for the SHE hydrological modelling system, J. Hydrol., 175 ( 1–4 ), 213 – 238, doi: 10.1016/S0022-1694(96)80012-6.en_US
dc.identifier.citedreferenceWilby, R. L., and C. W. Dawson ( 2007 ), SDSM 4.2 — A decision support tool for the assessment of regional climate change impacts, Lancaster University, Lancaster/Environment Agency of England and Wales.en_US
dc.identifier.citedreferenceWillgoose, G., R. L. Bras, and I. Rodriguez‐Iturbe ( 1991 ), A coupled channel network growth and hillslope evolution model: 1 Theory, Water Resour. Res., 27 ( 7 ), 1671 – 1684, doi: 10.1029/91WR00935.en_US
dc.identifier.citedreferenceYalin, M. S. ( 1972 ), Mechanics of Sediment Transport, Pergamon Press, Oxford, U. K.en_US
dc.identifier.citedreferenceYang, C. T. ( 1996 ), Sediment Transport: Theory and Practice, McGraw‐Hill Higher Education, New York.en_US
dc.identifier.citedreferenceZhang, P. Z., P. Molnar, and W. R. Downs ( 2001 ), Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates, Nature, 410 ( 6831 ), 891 – 897.en_US
dc.identifier.citedreferenceZhang, X. C. ( 2007 ), A comparison of explicit and implicit spatial downscaling of GCM output for soil erosion and crop production assessments, Clim. Change, 84 ( 3–4 ), 337 – 363, doi: 10.1007/s10584-007-9256-1.en_US
dc.identifier.citedreferenceAnandhi, A., A. Frei, D. C. Pierson, E. M. Schneiderman, M. S. Zion, D. Lounsbury, and A. H. Matonse ( 2011 ), Examination of change factor methodologies for climate change impact assessment, Water Resour. Res., 47, W03501, doi: 10.1029/2010WR009104.en_US
dc.identifier.citedreferenceBirkinshaw, S. J., and J. C. Bathurst ( 2006 ), Model study of the relationship between sediment yield and river basin area, Earth Surf. Processes Landforms, 31 ( 6 ), 750 – 761, doi: 10.1002/Esp.1291.en_US
dc.identifier.citedreferenceChaplot, V. ( 2007 ), Water and soil resources response to rising levels of atmospheric CO 2 concentration and to changes in precipitation and air temperature, J. Hydrol., 337 ( 1–2 ), 159 – 171, doi: 10.1016/j.jhydrol.2007.01.026.en_US
dc.identifier.citedreferenceChen, J., F. P. Brissette, and R. Leconte ( 2011 ), Uncertainty of downscaling method in quantifying the impact of climate change on hydrology, J. Hydrol., 401 ( 3–4 ), 190 – 202, doi: 10.1016/j.jhydrol.2011.02.020.en_US
dc.identifier.citedreferenceChristensen, J. H., et al. ( 2007 ), Regional Climate Projections, Climate Change, 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., p. 996, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceCoppus, R., and A. C. Imeson ( 2002 ), Extreme events controlling erosion and sediment transport in a semi‐arid sub‐Andean valley, Earth Surf. Processes Landforms, 27 ( 13 ), 1365 – 1375, doi: 10.1002/esp.435.en_US
dc.identifier.citedreferenceCoulthard, T. J., and M. G. Macklin ( 2001 ), How sensitive are river systems to climate and land‐use changes? A model‐based evaluation, J. Quat. Sci., 16 ( 4 ), 347 – 351, doi: 10.1002/jqs.604.en_US
dc.identifier.citedreferenceCoulthard, T. J., M. G. Macklin, and M. J. Kirkby ( 2002 ), A cellular model of Holocene upland river basin and alluvial fan evolution, Earth Surf. Processes Landforms, 27 ( 3 ), 269 – 288, doi: 10.1002/Esp.318.en_US
dc.identifier.citedreferenceCoulthard, T. J., J. Lewin, and M. G. Macklin ( 2005 ), Modelling differential catchment response to environmental change, Geomorphology, 69 ( 1–4 ), 222 – 241, doi: 10.1016/j.geomorph.2005.01.008.en_US
dc.identifier.citedreferenceCoulthard, T. J., J. Ramirez, H. J. Fowler, and V. Glenis ( 2012 ), Using the UKCP09 probabilistic scenarios to model the amplified impact of climate change on drainage basin sediment yield, Hydrol. Earth Syst. Sci., 16 ( 11 ), 4401 – 4416, doi: 10.5194/hess-16-4401-2012.en_US
dc.identifier.citedreferenceCowpertwait, P., V. Isham, and C. Onof ( 2007 ), Point Process Models of Rainfall: Developments for Fine-Scale Structure, pp. 2569 – 2587.en_US
dc.identifier.citedreferenceCowpertwait, P. S. P. ( 1991 ), Further developments of the neyman‐scott clustered point process for modeling rainfall, Water Resour. Res., 27 ( 7 ), 1431 – 1438, doi: 10.1029/91WR00479.en_US
dc.identifier.citedreferenceCowpertwait, P. S. P., P. E. O'Connell, A. V. Metcalfe, and J. A. Mawdsley ( 1996 ), Stochastic point process modelling of rainfall. I. Single‐site fitting and validation, J. Hydrol., 175 ( 1–4 ), 17 – 46, doi: 10.1016/S0022-1694(96)80004-7.en_US
dc.identifier.citedreferenceCunnane, C. ( 1978 ), Unbiased plotting positions — A review, J. Hydrol., 37 ( 3‐4 ), 205 – 222, doi: 10.1016/0022-1694(78)90017-3.en_US
dc.identifier.citedreferenceDe Boer, D. H., and G. Crosby ( 1996 ), Specific Sediment Yield and Drainage Basin Scale, Paper Presented at Global and Regional Perspective, IAHS, Exeter, U. K.en_US
dc.identifier.citedreferenceDedkov, A. ( 2004 ), The relationship between sediment yield and drainage basin area, in Sediment Transfer Through the Fluvial System: Proceedings of the International Symposium Held at Moscow, Russia, from 2 to 6 August, 2004, pp. 197 – 204, IAHS, Wallingford, U. K.en_US
dc.identifier.citedreferenceDeser, C., A. Phillips, V. Bourdette, and H. Y. Teng ( 2012a ), Uncertainty in climate change projections: The role of internal variability, Clim. Dyn., 38 ( 3–4 ), 527 – 546, doi: 10.1007/s00382-010-0977-x.en_US
dc.identifier.citedreferenceDeser, C., R. Knutti, S. Solomon, and A. S. Phillips ( 2012b ), Communication of the role of natural variability in future North American climate, Nat. Clim. Change, 2 ( 11 ), 775 – 779, doi: 10.1038/Nclimate1562.en_US
dc.identifier.citedreferencede Vente, J., J. Poesen, M. Arabkhedri, and G. Verstraeten ( 2007 ), The sediment delivery problem revisited, Prog. Phys. Geogr., 31 ( 2 ), 155 – 178, doi: 10.1177/0309133307076485.en_US
dc.identifier.citedreferenceEasterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns ( 2000 ), Climate extremes: Observations, modeling, and impacts, Science, 289 ( 5487 ), 2068 – 2074, doi: 10.1126/science.289.5487.2068.en_US
dc.identifier.citedreferenceEmmerich, W. E., and C. L. Verdugo ( 2008 ), Long‐term carbon dioxide and water flux database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S09, doi: 10.1029/2006WR005693.en_US
dc.identifier.citedreferenceEnke, W., and A. Spekat ( 1997 ), Downscaling climate model outputs into local and regional weather elements by classification and regression, Clim. Res., 8 ( 3 ), 195 – 207, doi: 10.3354/cr008195.en_US
dc.identifier.citedreferenceEnke, W., T. Deutschlander, F. Schneider, and W. Kuchler ( 2005 ), Results of five regional climate studies applying a weather pattern based downscaling method to ECHAM4 climate simulations, Meteorol. Z., 14 ( 2 ), 247 – 257, doi: 10.1127/0941-2948/2005/0028.en_US
dc.identifier.citedreferenceEntekhabi, D. ( 2000 ), Land Surface Processes: Basic Tools and Concepts, MIT, Cambridge, Mass.en_US
dc.identifier.citedreferenceFatichi, S. ( 2010 ), The modeling of hydrological cycle and its interaction with vegetation in the framework of climate change, PhD dissertation thesis, Univ. of Firenze and T.U. Braunschweig.en_US
dc.identifier.citedreferenceFatichi, S., V. Y. Ivanov, and E. Caporali ( 2011 ), Simulation of future climate scenarios with a weather generator, Adv. Water Resour., 34 ( 4 ), 448 – 467, doi: 10.1016/j.advwatres.2010.12.013.en_US
dc.identifier.citedreferenceFatichi, S., V. Y. Ivanov, and E. Caporali ( 2012 ), A mechanistic ecohydrological model to investigate complex interactions in cold and warm water‐controlled environments: 2 Spatiotemporal analyses, J. Adv. Model. Earth Syst., 4, M05003, doi: 10.1029/2011MS000087.en_US
dc.identifier.citedreferenceFatichi, S., V. Y. Ivanov, and E. Caporali ( 2013 ), Assessment of a stochastic downscaling methodology in generating an ensemble of hourly future climate time series, Clim. Dyn., 40 ( 7–8 ), 1841 – 1861, doi: 10.1007/s00382-012-1627-2.en_US
dc.identifier.citedreferenceFatichi, S., S. Rimkus, P. Burlando, and R. Bordoy ( 2014 ), Does internal climate variability overwhelm climate change signals in streamflow? The upper Po and Rhone basin case studies, Sci. Total Environ., 493, 1171 – 1182, doi: 10.1016/j.scitotenv.2013.12.014.en_US
dc.identifier.citedreferenceFavis‐Mortlock, D., and J. Boardman ( 1995 ), Nonlinear responses of soil erosion to climate change: A modelling study on the UK South Downs, Catena, 25 ( 1–4 ), 365 – 387, doi: 10.1016/0341-8162(95)00018-n.en_US
dc.identifier.citedreferenceFavis‐Mortlock, D. T., and S. J. T. Guerra ( 1999 ), The implications of general circulation model estimates of rainfall for future erosion: A case study from Brazil, Catena, 37 ( 3–4 ), 329 – 354, doi: 10.1016/S0341-8162(99)00025-9.en_US
dc.identifier.citedreferenceFavis‐Mortlock, D. T., and M. R. Savabi ( 1996 ), Shifts in rates and spatial distribution of soil erosion and deposition under climate change, in Advances in Hillslope Processes, edited by M. G. Anderson and S. M. Brooks, pp. 129 – 560, John Wiley, New York.en_US
dc.identifier.citedreferenceFischer, E. M., U. Beyerle, and R. Knutti ( 2013 ), Robust spatially aggregated projections of climate extremes, Nat. Clim. Change, 3 ( 12 ), 1033 – 1038, doi: 10.1038/nclimate2051.en_US
dc.identifier.citedreferenceFlerchinger, G. N., W. P. Kustas, and M. A. Weltz ( 1998 ), Simulating surface energy fluxes and radiometric surface temperatures for two arid vegetation communities using the SHAW model, J. Appl. Meteorol., 37 ( 5 ), 449 – 460, doi: 10.1175/1520-0450(1998)037<0449:Ssefar>2.0.Co;2.en_US
dc.identifier.citedreferenceFowler, A. M., and K. J. Hennessy ( 1995 ), Potential impacts of global warming on the frequency and magnitude of heavy precipitation, Nat. Hazards, 11 ( 3 ), 283 – 303, doi: 10.1007/Bf00613411.en_US
dc.identifier.citedreferenceFrancipane, A. ( 2010 ), tRIBS‐Erosion: A physically‐based model for studying mechanisms of eco‐hydro‐geomorphic coupling, PhD dissertation thesis, Univ. of Palermo, Palermo.en_US
dc.identifier.citedreferenceFrancipane, A., V. Y. Ivanov, L. V. Noto, E. Istanbulluoglu, E. Arnone, and R. L. Bras ( 2012 ), tRIBS‐Erosion: A parsimonious physically‐based model for studying catchment hydro‐geomorphic response, Catena, 92, 216 – 231, doi: 10.1016/j.catena.2011.10.005.en_US
dc.identifier.citedreferenceFreeze, R. A., and J. A. Cherry ( 1979 ), Groundwater, Prentice‐Hall, Englewood Cliffs, N. J.en_US
dc.identifier.citedreferenceGoodrich, D. C., L. J. Lane, R. M. Shillito, S. N. Miller, K. H. Syed, and D. A. Woolhiser ( 1997 ), Linearity of basin response as a function of scale in a semiarid watershed, Water Resour. Res., 33 ( 12 ), 2951 – 2965, doi: 10.1029/97WR01422.en_US
dc.identifier.citedreferenceGoodrich, D. C., T. O. Keefer, C. L. Unkrich, M. H. Nichols, H. B. Osborn, J. J. Stone, and J. R. Smith ( 2008a ), Long‐term precipitation database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S04, doi: 10.1029/2006WR005782.en_US
dc.identifier.citedreferenceGoodrich, D. C., C. L. Unkrich, T. O. Keefer, M. H. Nichols, J. J. Stone, L. R. Levick, and R. L. Scott ( 2008b ), Event to multidecadal persistence in rainfall and runoff in southeast Arizona, Water Resour. Res., 44, W05S14, doi: 10.1029/2007WR006222.en_US
dc.identifier.citedreferenceGueymard, C. A. ( 2008 ), REST2: High‐performance solar radiation model for cloudless‐sky irradiance, illuminance, and photosynthetically active radiation ‐ Validation with a benchmark dataset, Sol. Energy, 82 ( 3 ), 272 – 285, doi: 10.1016/j.solener.2007.04.008.en_US
dc.identifier.citedreferenceHack, J. T., and J. C. Goodlett ( 1960 ), Geomorphology and Forest Ecology of a Mountain Region in the Central Appalachians, U. S. Gov. Print. Off., Washington D. C.en_US
dc.identifier.citedreferenceHancock, G. R., and T. J. Coulthard ( 2012 ), Channel movement and erosion response to rainfall variability in southeast Australia, Hydrol. Processes, 26 ( 5 ), 663 – 673, doi: 10.1002/Hyp.8166.en_US
dc.identifier.citedreferenceHancock, G. R., T. J. Coulthard, and G. R. Willgoose ( 2011 ), Modeling erosion and channel movement ‐ Response to rainfall variability in south east Australia, pp. 1874 – 1880.en_US
dc.identifier.citedreferenceHawkins, E., and R. Sutton ( 2011 ), The potential to narrow uncertainty in projections of regional precipitation change, Clim. Dyn., 37 ( 1–2 ), 407 – 418, doi: 10.1007/s00382-010-0810-6.en_US
dc.identifier.citedreferenceHu, Z., and S. Islam ( 1995 ), Prediction of ground surface temperature and soil moisture content by the force‐restore method, Water Resour. Res., 31 ( 10 ), 2531 – 2539, doi: 10.1029/95WR01650.en_US
dc.identifier.citedreferenceImeson, A. C., and H. Lavee ( 1998 ), Soil erosion and climate change: The transect approach and the influence of scale, Geomorphology, 23 ( 2–4 ), 219 – 227, doi: 10.1016/S0169-555x(98)00005-1.en_US
dc.identifier.citedreferenceIntergovernmental Panel on Climate Change ( 2007 ), Summary for policymakers, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, U. K., and New York.en_US
dc.identifier.citedreferenceIstanbulluoglu, E. ( 2009a ), Modeling catchment evolution: From decoding geomorphic processes signatures toward predicting impacts of climate change, Geogr. Compass, 3 ( 3 ), 1125 – 1150, doi: 10.1111/j.1749-8198.2009.00228.x.en_US
dc.identifier.citedreferenceIstanbulluoglu, E. ( 2009b ), An eco‐hydro‐geomorphic perspective to modeling the role of climate in catchment evolution, Geogr Compass, 3 ( 3 ), 1151 – 1175, doi: 10.1111/j.1749-8198.2009.00229.x.en_US
dc.identifier.citedreferenceIstanbulluoglu, E., and R. L. Bras ( 2005 ), Vegetation‐modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography, J. Geophys. Res., 110, F02012, doi: 10.1029/2004JF000249.en_US
dc.identifier.citedreferenceIstanbulluoglu, E., D. G. Tarboton, R. T. Pack, and C. H. Luce ( 2004 ), Modeling of the interactions between forest vegetation, disturbances, and sediment yields, J. Geophys. Res., 109, F01009, doi: 10.1029/2003JF000041.en_US
dc.identifier.citedreferenceIvanov, V. Y., E. R. Vivoni, R. L. Bras, and D. Entekhabi ( 2004a ), Preserving high‐resolution surface and rainfall data in operational‐scale basin hydrology: A fully‐distributed physically‐based approach, J. Hydrol., 298 ( 1–4 ), 80 – 111, doi: 10.1016/j.jhydrol.2004.03.041.en_US
dc.identifier.citedreferenceIvanov, V. Y., E. R. Vivoni, R. L. Bras, and D. Entekhabi ( 2004b ), Catchment hydrologic response with a fully distributed triangulated irregular network model, Water Resour. Res., 40, W11102, doi: 10.1029/2004WR003218.en_US
dc.identifier.citedreferenceKim, J., and V. Y. Ivanov ( 2014 ), On the nonuniqueness of sediment yield at the catchment scale: The effects of soil antecedent conditions and surface shield, Water Resour. Res., 50, 1025 – 1045, doi: 10.1002/2013wr014580.en_US
dc.identifier.citedreferenceKim, J., V. Y. Ivanov, and N. D. Katopodes ( 2013 ), Modeling erosion and sedimentation coupled with hydrological and overland flow processes at the watershed scale, Water Resour. Res., 49, 5134 – 5154, doi: 10.1002/wrcr.20373.en_US
dc.identifier.citedreferenceKim, M. K., D. C. Flanagan, J. R. Frankenberger, and C. R. Meyer ( 2009 ), Impact of precipitation changes on runoff and soil erosion in Korea using CLIGEN and WEPP, J. Soil Water Conserv., 64 ( 2 ), 154 – 162, doi: 10.2489/jswc.64.2.154.en_US
dc.identifier.citedreferenceKing, D. M., S. M. Skirvin, C. D. H. Collins, M. S. Moran, S. H. Biedenbender, M. R. Kidwell, M. A. Weltz, and A. Diaz‐Gutierrez ( 2008 ), Assessing vegetation change temporally and spatially in southeastern Arizona, Water Resour. Res., 44, W05S15, doi: 10.1029/2006WR005850.en_US
dc.identifier.citedreferenceKunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith ( 2010 ), Recent increases in U.S. heavy precipitation associated with tropical cyclones, Geophys. Res. Lett., 37, L24706, doi: 10.1029/2010GL045164.en_US
dc.identifier.citedreferenceLaflen, J. M., L. J. Lane, and G. R. Foster ( 1991 ), WEPP: A new generation of erosion prediction technology, J. Soil Water Conserv., 46 ( 1 ), 34 – 38.en_US
dc.identifier.citedreferenceLane, S. N. ( 2013 ), 21st century climate change: Where has all the geomorphology gone?, Earth Surf. Processes Landforms, 38 ( 1 ), 106 – 110, doi: 10.1002/esp.3362.en_US
dc.identifier.citedreferenceLangbein, W. B., and S. A. Schumm ( 1958 ), Yield of sediment in relation to mean annual precipitation, Trans. Am. Geophys. Union, 39 ( 6 ), 1076, doi: 10.1029/TR039i006p01076.en_US
dc.identifier.citedreferenceLin, J. D. ( 1980 ), On the force‐restore method for prediction of ground surface temperature, J. Geophys. Res., 85 ( C6 ), 3251 – 3254, doi: 10.1029/JC085iC06p03251.en_US
dc.identifier.citedreferenceLu, H., C. J. Moran, and M. Sivapalan ( 2005 ), A theoretical exploration of catchment‐scale sediment delivery, Water Resour. Res., 41, W09415, doi: 10.1029/2005WR004018.en_US
dc.identifier.citedreferenceMartin, Y. E. ( 2013 ), 14.6 Methods in geomorphology: Numerical modeling of drainage basin development, in Treatise on Geomorphology, edited by J. F. Shroder, pp. 65 – 72, Academic Press, San Diego, Calif.en_US
dc.identifier.citedreferenceMartin, Y., and M. Church ( 2004 ), Numerical modelling of landscape evolution: Geomorphological perspectives, Prog. Phys. Geogr., 28 ( 3 ), 317 – 339, doi: 10.1191/0309133304pp412ra.en_US
dc.identifier.citedreferenceMeehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor ( 2007 ), The WCRP CMIP3 multimodel dataset ‐ A new era in climate change research, Bull. Am. Meteorol. Soc., 88 ( 9 ), 1383 – 1394, doi: 10.1175/Bams-88-9-1383.en_US
dc.identifier.citedreferenceMonteith, J. L. ( 1965 ), Evaporation and environment, Symp. Soc. Exp. Biol., 19, 205 – 234.en_US
dc.identifier.citedreferenceMorris, G. L., and J. Fan ( 1998 ), Reservoir Sedimentation Handbook, McGraw‐Hill Book Co., New York.en_US
dc.identifier.citedreferenceMullan, D. ( 2013 ), Soil erosion under the impacts of future climate change: Assessing the statistical significance of future changes and the potential on‐site and off‐site problems, Catena, 109, 234 – 246, doi: 10.1016/j.catena.2013.03.007.en_US
dc.identifier.citedreferenceMullan, D., D. Favis‐Mortlock, and R. Fealy ( 2012 ), Addressing key limitations associated with modelling soil erosion under the impacts of future climate change, Agric. For. Meteorol., 156 ( 0 ), 18 – 30, doi: 10.1016/j.agrformet.2011.12.004.en_US
dc.identifier.citedreferenceMurphy, J. M., et al. ( 2009 ), UK climate projections science report: Climate change projections Rep, Met Office Hadley Centre, Exeter.en_US
dc.identifier.citedreferenceNaik, P. K., and D. A. Jay ( 2011 ), Distinguishing human and climate influences on the Columbia River: Changes in mean flow and sediment transport, J. Hydrol., 404 ( 3–4 ), 259 – 277, doi: 10.1016/j.jhydrol.2011.04.035.en_US
dc.identifier.citedreferenceNearing, M. A. ( 2001 ), Potential changes in rainfall erosivity in the U.S. with climate change during the 21st century, J. Soil Water Conserv., 56 ( 3 ), 229 – 232.en_US
dc.identifier.citedreferenceNearing, M. A., G. R. Foster, L. J. Lane, and S. C. Finkner ( 1989 ), A process‐based soil‐erosion model for USDA‐water erosion prediction project technology, Trans. Asae, 32 ( 5 ), 1587 – 1593.en_US
dc.identifier.citedreferenceNearing, M. A., J. R. Simanton, L. D. Norton, S. J. Bulygin, and J. Stone ( 1999 ), Soil erosion by surface water flow on a stony, semiarid hillslope, Earth Surf. Processes Landforms, 24 ( 8 ), 677 – 686, doi: 10.1002/(Sici)1096-9837(199908)24:8<677::Aid-Esp981>3.0.Co;2-1.en_US
dc.identifier.citedreferenceNearing, M. A., et al. ( 2005 ), Modeling response of soil erosion and runoff to changes in precipitation and cover, Catena, 61 ( 2‐3 ), 131 – 154, doi: 10.1016/j.catena.2005.03.007.en_US
dc.identifier.citedreferenceNearing, M. A., M. H. Nichols, J. J. Stone, K. G. Renard, and J. R. Simanton ( 2008 ), Sediment yields from unit‐source semiarid watersheds at Walnut, Water Resour. Res., 44, W06426, doi: 10.1029/2008WR006907.en_US
dc.identifier.citedreferenceNeitsch, S. L., J. G. Arnold, J. R. Kiniry, J. R. Williams, and K. W. King ( 2002 ), Soil and water assessment tool theoretical documentation, TWRI Rep. TR‐191, Tex. Water Resour. Inst., College Station.en_US
dc.identifier.citedreferenceNichols, M. H., J. J. Stone, and M. A. Nearing ( 2008 ), Sediment database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S06, doi: 10.1029/2006WR005682.en_US
dc.identifier.citedreferenceNicks, A. D., and G. A. Gander ( 1994 ), CLIGEN: A weather generator for climate inputs to water resource and other models, paper presented at 5th International Conference on Computers in Agriculture, Orlando, Fla.en_US
dc.identifier.citedreferenceNunes, J. P., and M. A. Nearing ( 2010 ), Modelling impacts of climatic change: Case studies using the new generation of erosion models, in Handbook of Erosion Modelling, pp. 289 – 312, John Wiley, Chichester, U. K.en_US
dc.identifier.citedreferenceNunes, J. P., G. N. Vieira, J. Seixas, P. Gonclaves, and N. Carvalhais ( 2005 ), Evaluating the MEFIDIS model for runoff and soil erosion prediction during rainfall events, Catena, 61 ( 2‐3 ), 210 – 228, doi: 10.1016/j.catena.2005.03.005.en_US
dc.identifier.citedreferenceNunes, J. P., J. Seixas, and N. R. Pacheco ( 2008 ), Vulnerability of water resources, vegetation productivity and soil erosion to climate change in Mediterranean watersheds, Hydrol. Processes, 22 ( 16 ), 3115 – 3134, doi: 10.1002/Hyp.6897.en_US
dc.identifier.citedreferenceNunes, J. P., J. Seixas, and J. J. Keizer ( 2013 ), Modeling the response of within‐storm runoff and erosion dynamics to climate change in two Mediterranean watersheds: A multi‐model, multi‐scale approach to scenario design and analysis, Catena, 102, 27 – 39, doi: 10.1016/j.catena.2011.04.001.en_US
dc.identifier.citedreferenceO'Neal, M. R., M. A. Nearing, R. C. Vining, J. Southworth, and R. A. Pfeifer ( 2005 ), Climate change impacts on soil erosion in Midwest United States with changes in crop management, Catena, 61 ( 2–3 ), 165 – 184, doi: 10.1016/j.catena.2005.03.003.en_US
dc.identifier.citedreferenceOsborn, H. B. ( 1983 ), Timing and duration of high rainfall rates in the southwestern United States, Water Resour. Res., 19 ( 4 ), 1036 – 1042, doi: 10.1029/WR019i004p01036.en_US
dc.identifier.citedreferenceOsterkamp, W. R., C. R. Hupp, and M. R. Schening ( 1995 ), Little River revisited — Thirty‐five years after Hack and Goodlett, Geomorphology, 13 ( 1–4 ), 1 – 20, doi: 10.1016/0169-555x(95)00063-b.en_US
dc.identifier.citedreferenceParsons, A. J., J. Wainwright, R. E. Brazier, and D. M. Powell ( 2006 ), Is sediment delivery a fallacy?, Earth Surf. Processes Landforms, 31 ( 10 ), 1325 – 1328, doi: 10.1002/esp.1395.en_US
dc.identifier.citedreferencePaschalis, A., P. Molnar, S. Fatichi, and P. Burlando ( 2014 ), On temporal stochastic modeling of precipitation, nesting models across scales, Adv. Water Resour., 63 ( 0 ), 152 – 166, doi: 10.1016/j.advwatres.2013.11.006.en_US
dc.identifier.citedreferencePeixoto, J. P., and A. H. Oort ( 1992 ), The Physics of Climate, Springer, New York.en_US
dc.identifier.citedreferencePenman, H. L. ( 1948 ), Natural evaporation from open water, bare soil and grass, Proc. R. Soc. A: Math. Phys. Eng. Sci., 193 ( 1032 ), 120 – 145, doi: 10.1098/rspa.1948.0037.en_US
dc.identifier.citedreferencePhan, D. B., C. C. Wu, and S. C. Hsieh ( 2011 ), Impact of climate change on stream discharge and sediment yield in Northern Viet Nam, Water Resour., 38 ( 6 ), 827 – 836, doi: 10.1134/s0097807811060133.en_US
dc.identifier.citedreferencePolyakov, V. O., M. A. Nearing, M. H. Nichols, R. L. Scott, J. J. Stone, and M. P. McClaran ( 2010 ), Long‐term runoff and sediment yields from small semiarid watersheds in southern Arizona, Water Resour. Res., 46, W09512, doi: 10.1029/2009WR009001.en_US
dc.identifier.citedreferencePruski, F. F., and M. A. Nearing ( 2002a ), Runoff and soil‐loss responses to changes in precipitation: A computer simulation study, J. Soil Water Conserv., 57 ( 1 ), 7 – 16.en_US
dc.identifier.citedreferencePruski, F. F., and M. A. Nearing ( 2002b ), Climate‐induced changes in erosion during the 21st century for eight U.S. locations, Water Resour. Res., 38 ( 12 ), 1298, doi: 10.1029/2001WR000493.en_US
dc.identifier.citedreferenceRäisänen, J. ( 2007 ), How reliable are climate models?, Tellus A, 59 ( 1 ), 2 – 29, doi: 10.1111/j.1600-0870.2006.00211.x.en_US
dc.identifier.citedreferenceRenard, K. G., L. J. Lane, J. R. Simanton, W. E. Emmerich, J. J. Stone, M. A. Weltz, D. C. Goodrich, and D. S. Yakowitz ( 1993 ), Agricultural impacts in an arid environment: Walnut Gulch studies, Hydrol. Sci. Technol., 9, 145 – 190.en_US
dc.identifier.citedreferenceRiebe, C. S., J. W. Kirchner, D. E. Granger, and R. C. Finkel ( 2001 ), Minimal climatic control on erosion rates in the Sierra Nevada, California, Geology, 29 ( 5 ), 447 – 450, doi: 10.1130/0091-7613(2001)029<0447:Mccoer>2.0.Co;2.en_US
dc.identifier.citedreferenceRinehart, A. J., E. R. Vivoni, and P. D. Brooks ( 2008 ), Effects of vegetation, albedo, and solar radiation sheltering on the solution of snow in the Valles Caldera, New Mexico, Ecohydrology, 1, 253 – 270.en_US
dc.identifier.citedreferenceRitchie, J. C., M. A. Nearing, M. H. Nichols, and C. A. Ritchie ( 2005 ), Patterns of soil erosion and redeposition on Lucky Hills Watershed, Walnut Gulch experimental watershed, Arizona, Catena, 61 ( 2–3 ), 122 – 130, doi: 10.1016/j.catena.2005.03.012.en_US
dc.identifier.citedreferenceRoering, J. J., J. W. Kirchner, and W. E. Dietrich ( 2001 ), Hillslope evolution by nonlinear, slope‐dependent transport: Steady state morphology and equilibrium adjustment timescales, J. Geophys. Res., 106 ( B8 ), 16,499 – 16,513, doi: 10.1029/2001JB000323.en_US
dc.identifier.citedreferenceRömkens, M. J. M., K. Helming, and S. N. Prasad ( 2002 ), Soil erosion under different rainfall intensities, surface roughness, and soil water regimes, Catena, 46 ( 2–3 ), 103 – 123, doi: 10.1016/s0341-8162(01)00161-8.en_US
dc.identifier.citedreferenceRoutschek, A., J. Schmidt, W. Enke, and T. Deutschlaender ( 2014 ), Future soil erosion risk ‐ Results of GIS‐based model simulations for a catchment in Saxony/Germany, Geomorphology, 206, 299 – 306, doi: 10.1016/j.geomorph.2013.09.033.en_US
dc.identifier.citedreferenceRutter, A. J., A. J. Morton, and P. C. Robins ( 1975 ), A predictive model of rainfall interception in forests. II Generalization of the model and comparison with observations in some coniferous and hardwood stands, J. Appl. Ecol., 12 ( 1 ), 367 – 380.en_US
dc.identifier.citedreferenceSalles, C., J. Poesen, and G. Govers ( 2000 ), Statistical and physical analysis of soil detachment by raindrop impact: Rain erosivity indices and threshold energy, Water Resour. Res., 36 ( 9 ), 2721 – 2729, doi: 10.1029/2000WR900024.en_US
dc.identifier.citedreferenceSeager, R. ( 2007 ), The turn of the century North American drought: Global context, dynamics, and past analogs, J. Clim., 20 ( 22 ), 5527 – 5552, doi: 10.1175/2007jcli1529.1.en_US
dc.identifier.citedreferenceSeager, R., et al. ( 2007 ), Model projections of an imminent transition to a more arid climate in southwestern North America, Science, 316 ( 5828 ), 1181 – 1184, doi: 10.1126/science.1139601.en_US
dc.identifier.citedreferenceSheppard, P. R., A. C. Comrie, G. D. Packin, K. Angersbach, and M. K. Hughes ( 2002 ), The climate of the US Southwest, Clim. Res., 21 ( 3 ), 219 – 238, doi: 10.3354/Cr021219.en_US
dc.identifier.citedreferenceShrestha, B., M. S. Babel, S. Maskey, A. van Griensven, S. Uhlenbrook, A. Green, and I. Akkharath ( 2013 ), Impact of climate change on sediment yield in the Mekong River basin: A case study of the Nam Ou basin, Lao PDR, Hydrol. Earth Syst. Sci., 17 ( 1 ), 1 – 20, doi: 10.5194/hess-17-1-2013.en_US
dc.identifier.citedreferenceSimonoff, J. S. ( 1996 ), Smoothing Methods in Statistics, Springer, New York.en_US
dc.identifier.citedreferenceSimons, D. B., and F. Şentürk ( 1992 ), Sediment Transport Technology: Water and Sediment Dynamics, Water Resour. Publ., Littleton, Colo.en_US
dc.identifier.citedreferenceSkirvin, S., M. Kidwell, S. Biedenbender, J. P. Henley, D. King, C. H. Collins, S. Moran, and M. Weltz ( 2008 ), Vegetation data, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S08, doi: 10.1029/2006WR005724.en_US
dc.identifier.citedreferenceSlingo, A. ( 1989 ), A GCM parameterization for the shortwave radiative properties of water clouds, J. Atmos. Sci., 46 ( 10 ), 1419 – 1427, doi: 10.1175/1520-0469(1989)046<1419:agpfts>2.0.co;2.en_US
dc.identifier.citedreferenceStephens, G. L. ( 1978 ), Radiation profiles in extended water clouds. II: Parameterization schemes, J. Atmos. Sci., 35 ( 11 ), 2123 – 2132, doi: 10.1175/1520-0469(1978)035<2123:rpiewc>2.0.co;2.en_US
dc.identifier.citedreferenceStone, J. J., M. H. Nichols, D. C. Goodrich, and J. Buono ( 2008 ), Long‐term runoff database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S05, doi: 10.1029/2006WR005733.en_US
dc.identifier.citedreferenceStyczen, M., and K. Høgh‐Schmidt ( 1988 ), A new description of splash erosion in relation to raindrop sizes and vegetation, in Erosion Assessment and Modelling, edited by R. P. C. Morgan and R. J. Rickson, Commission of the European Communities Rep. EUR 10860 EN, pp. 147 – 184, Brussels.en_US
dc.identifier.citedreferenceTebaldi, C., L. O. Mearns, D. Nychka, and R. L. Smith ( 2004 ), Regional probabilities of precipitation change: A Bayesian analysis of multimodel simulations, Geophys. Res. Lett., 31, D18123, doi: 10.1029/2004GL021276.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.