Show simple item record

The proton and electron radiation belts at geosynchronous orbit: Statistics and behavior during high‐speed stream‐driven storms

dc.contributor.authorBorovsky, Joseph E.
dc.contributor.authorCayton, Thomas E.
dc.contributor.authorDenton, Michael H.
dc.contributor.authorBelian, Richard D.
dc.contributor.authorChristensen, Roderick A.
dc.contributor.authorIngraham, J. Charles
dc.date.accessioned2016-09-17T23:54:03Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-06
dc.identifier.citationBorovsky, Joseph E.; Cayton, Thomas E.; Denton, Michael H.; Belian, Richard D.; Christensen, Roderick A.; Ingraham, J. Charles (2016). "The proton and electron radiation belts at geosynchronous orbit: Statistics and behavior during high‐speed stream‐driven storms." Journal of Geophysical Research: Space Physics 121(6): 5449-5488.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/133567
dc.description.abstractThe outer proton radiation belt (OPRB) and outer electron radiation belt (OERB) at geosynchronous orbit are investigated using a reanalysis of the LANL CPA (Charged Particle Analyzer) 8‐satellite 2‐solar cycle energetic particle data set from 1976 to 1995. Statistics of the OPRB and the OERB are calculated, including local time and solar cycle trends. The number density of the OPRB is about 10 times higher than the OERB, but the 1 MeV proton flux is about 1000 times less than the 1 MeV electron flux because the proton energy spectrum is softer than the electron spectrum. Using a collection of 94 high‐speed stream‐driven storms in 1976–1995, the storm time evolutions of the OPRB and OERB are studied via superposed epoch analysis. The evolution of the OERB shows the familiar sequence (1) prestorm decay of density and flux, (2) early‐storm dropout of density and flux, (3) sudden recovery of density, and (4) steady storm time heating to high fluxes. The evolution of the OPRB shows a sudden enhancement of density and flux early in the storm. The absence of a proton dropout when there is an electron dropout is noted. The sudden recovery of the density of the OERB and the sudden density enhancement of the OPRB are both associated with the occurrence of a substorm during the early stage of the storm when the superdense plasma sheet produces a “strong stretching phase” of the storm. These storm time substorms are seen to inject electrons to 1 MeV and protons to beyond 1 MeV into geosynchronous orbit, directly producing a suddenly enhanced radiation belt population.Key PointsDuring high‐speed stream‐driven storms, the electron and proton radiation belts are directly enhanced by a single substormThe enhancing substorm occurs during the “strong stretching” phase of the storm caused by the superdense plasma sheetProton and electron injection to 1 MeV is seen for these strong stretching phase substorms
dc.publisherWiley Periodicals, Inc.
dc.publisherAm. Inst. of Phys.
dc.subject.othercorotating interaction regions
dc.subject.otherradiation belts
dc.subject.othersubstorm acceleration
dc.subject.othergeomagnetic storms
dc.subject.otherplasma sheet
dc.subject.otherproton belt
dc.titleThe proton and electron radiation belts at geosynchronous orbit: Statistics and behavior during high‐speed stream‐driven storms
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133567/1/jgra52702.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133567/2/jgra52702_am.pdf
dc.identifier.doi10.1002/2016JA022520
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferencePaulikas, G. A., and J. B. Blake ( 1976 ), Modulation of trapped energetic electrons at 6.6 R e by the interplanetary magnetic field, Geophys. Res. Lett., 3, 277 – 280, doi: 10.1029/GL003i005p00277.
dc.identifier.citedreferenceSmolin, S. V. ( 2010 ), Effect of magnetospheric convection on the energy distribution of protons from the Earth radiation belts, Geomagn. Aeron., 50, 298, doi: 10.1134/S0016793210030035.
dc.identifier.citedreferenceSmolin, S. V. ( 2012 ), Three‐dimensional dynamics of the Earth’s radiation belt protons during the magnetic storm, J. Sib. Fed. Univ. Math. Phys., 7, 124.
dc.identifier.citedreferenceSøraas, F., K. Aarsnes, J. A. Lundblad, and D. S. Evans ( 1999 ), Enhanced pitch angle scattering of protons at mid‐latitudes during geomagnetic storms, Phys. Chem. Earth C, 24, 287.
dc.identifier.citedreferenceSpjeldvik, W. N. ( 1977 ), Equilibrium structure of equatorially mirroring radiation belt protons, J. Geophys. Res., 82, 2801 – 2808, doi: 10.1029/JA082i019p02801.
dc.identifier.citedreferenceStevens, J. R., E. F. Martina, and R. Stephen White ( 1970 ), Proton energy distributions from 0.060 to 3.3 MeV at 6.6 Earth radii, J. Geophys. Res., 75, 5373 – 5385.
dc.identifier.citedreferenceSuess, S. T., Y.‐K. Ko, R. Von Steiger, and R. L. Moore ( 2009 ), Quiescent current sheets in the solar wind and origins of slow wind, J. Geophys. Res., 114, A04103, doi: 10.1029/2008JA013704.
dc.identifier.citedreferenceSummers, D., C. Ma, N. P. Meredith, R. B. Horne, R. M. Thorne, and R. R. Anderson ( 2004 ), Modeling outer‐zone relativistic electron response to whistler‐mode chorus activity during substorms, J. Atmos. Sol. Terr. Phys., 66, 133, doi: 10.1016/j.jastp.2003.09.013.
dc.identifier.citedreferenceTanskanen, E. I., A. Viljanen, T. I. Pulkkinen, R. Prjola, L. Hakkinen, A. Pulkkinen, and O. Amm ( 2001 ), At substorm onset, 40% of AL comes from underground, J. Geophys. Res., 106, 13,119 – 13,134, doi: 10.1029/2000JA900135.
dc.identifier.citedreferenceThomsen, M. F. ( 2004 ), Why Kp is such a good measure of magnetospheric convection, Space Weather, 2, S11044, doi: 10.1029/2004SW000089.
dc.identifier.citedreferenceThomsen, M. F., M. H. Denton, V. K. Jordanova, L. Chen, and R. M. Thorne ( 2011 ), Free energy to drive equatorial magnetosonic wave instability at geosynchronous orbit, J. Geophys. Res., 116, A08220, doi: 10.1029/2011JA016644.
dc.identifier.citedreferenceThorne, R. M., R. B. Horne, V. K. Jordanova, J. Bortnik, and S. Glauert ( 2006 ), Interaction of EMIC waves with thermal plasma and radiation belt particles, in Magnetospheric ULF Waves, edited by K. Takahashi et al., 213 pp., AGU, Washington, D. C.
dc.identifier.citedreferenceTsurutani, B. T., C. M. Ho, E. J. Smith, M. Neugebauer, B. E. Goldstein, J. S. Mok, J. K. Arballo, A. Balogh, D. J. Southwood, and W. C. Feldman ( 1994 ), The relationship between interplanetary discontinuities and Alfven waves: Ulysses observations, Geophys. Res. Lett., 21, 2267 – 2270, doi: 10.1029/94GL02194.
dc.identifier.citedreferenceTsyganenko, N. A. ( 1982 ), Pitch‐angle scattering of energetic particles in the current sheet of the magnetospheric tail and stationary distribution functions, Planet. Space Sci., 30, 433, doi: 10.1016/0032-0633(82)90052-6.
dc.identifier.citedreferenceTurner, D. L., Y. Shprits, M. Hartinger, and V. Angelopoulos ( 2012 ), Explaining sudden loss of outer radiation belt electrons during geomagnetic storms, Nat. Phys., 8, 208, doi: 10.1038/nphys2185.
dc.identifier.citedreferenceTurner, D. L., et al. ( 2014 ), On the cause and extent of outer radiation belt losses during the 30 September 2012 dropout event, J. Geophys. Res. Space Physics, 119, 1530 – 1540, doi: 10.1002/2013JA019446.
dc.identifier.citedreferenceTverskaya, L. V., et al. ( 2008 ), Solar proton increases and dynamics of the electron outer radiation belt during solar events in December 2006, Geomagn. Aeron., 48, 719, doi: 10.1134/S0016793208060042.
dc.identifier.citedreferenceUkhorskiy, A. Y., B. J. Anderson, P. C. Brandt, and N. A. Tsyganenko ( 2006 ), Storm time evolution of the outer radiation belt: Transport and losses, J. Geophys. Res., 111, A11S03, doi: 10.1029/2006JA011690.
dc.identifier.citedreferenceUkhorskiy, A. Y., Y. Y. Shprits, B. J. Anderson, K. Takahashi, and R. M. Thorne ( 2010 ), Rapid scattering of radiation belt electrons by storm‐time EMIC waves, Geophys. Res. Lett., 37, L09101, doi: 10.1029/2010GL042906.
dc.identifier.citedreferenceVacaresse, A., D. Boscher, S. Bourdarie, M. Blanc, and J. A. Sauvaud ( 1999 ), Modeling the high‐energy proton belt, J. Geophys. Res., 104, 28,601 – 28,613, doi: 10.1029/1999JA900411.
dc.identifier.citedreferenceVillalon, E., and W. J. Burke ( 1994 ), Diffusion of radiation belt protons by whistler waves, J. Geophys. Res., 99, 21,329 – 21,340, doi: 10.1029/94JA01480.
dc.identifier.citedreferenceWalt, M., H. D. Voss, S. J. Lev‐Tov, J. Bobilia, and J.‐M. Jahn ( 2001 ), Diffusion of 155 to 430 keV protons in the Earth’s radiation belt, J. Geophys. Res., 106, 5957 – 5966, doi: 10.1029/2000JA003029.
dc.identifier.citedreferenceWang, Y.‐M., N. R. Sheeley, D. G. Socker, R. A. Howard, and N. B. Rich ( 2000 ), The dynamical nature of coronal streamers, J. Geophys. Res., 105, 25,113 – 25,142, doi: 10.1029/2000JA000435.
dc.identifier.citedreferenceWeygand, J. M., R. L. McPherron, K. Kauristie, H. U. Frey, and T.‐S. Hsu ( 2008 ), Relation of auroral substorm onset to local AL index and dispersionless particle injections, J. Atmos. Sol. Terr. Phys., 70, 2336, doi: 10.1016/j.jastp.2008.09.030.
dc.identifier.citedreferenceXu, F., and J. E. Borovsky ( 2015 ), A new 4‐plasma categorization scheme for the solar wind, J. Geophys. Res. Space Physics, 120, 70 – 100, doi: 10.1002/2014JA020412.
dc.identifier.citedreferenceYershkovitch, A. I., V. P. Shabansky, and A. E. Antonova ( 1965 ), Hypothesis of origin and formation of radiation belts as a result of particle drift into the depth of the magnetosphere, in Proceedings of the 9th International Conference on Cosmic Rays, vol. 1, 543 pp., London.
dc.identifier.citedreferenceYu, Y., J. Koller, and S. K. Morley ( 2013 ), Quantifying the effect of magnetopause shadowing on electron radiation belt dropouts, Ann. Geophys., 31, 1929, doi: 10.5194/angeo-31-1929-2013.
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2009a ), Electron loss rates from the outer electron radiation belt caused by the filling of the outer plasmasphere: The calm before the storm, J. Geophys. Res., 114, A11203, doi: 10.1029/2009JA014063.
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2009b ), Relativistic‐electron dropouts and recovery: A superposed‐epoch study of the magnetosphere and the solar wind, J. Geophys. Res., 114, A02201, doi: 10.1029/2008JA013128.
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2010a ), On the heating of the outer radiation belt to produce high fluxes of relativistic electrons: Measured heating rates for high‐speed stream‐driven storms, J. Geophys. Res., 115, A12206, doi: 10.1029/2010JA015342.
dc.identifier.citedreferenceAntonova, E. E., and M. V. Stepanova ( 2015 ), The problem of the acceleration of electrons of the outer radiation belt and magnetospheric substorms, Earth Planets Space, 67, 148, doi: 10.1186/s40623-015-0319-7.
dc.identifier.citedreferenceAntonova, E. E., I. M. Myagkova, M. V. Stapanov, M. O. Riazantseva, I. L. Ovchinnikov, B. B. Mar’in, and M. V. Karavaev ( 2011 ), Local particle traps in the high latitude magnetosphere and the acceleration of relativistic electrons, J. Atmos. Sol. Terr. Phys., 73, 1465, doi: 10.1016/j.jastp.2010.11.020.
dc.identifier.citedreferenceBaker, D. N., R. D. Belian, P. R. Higbie, and E. W. Hones ( 1979 ), High‐energy magnetospheric protons and their dependence on geomagnetic and interplanetary conditions, J. Geophys. Res., 84, 7138 – 7154, doi: 10.1029/JA084iA12p07138.
dc.identifier.citedreferenceBaker, D. N., W. Aiello, J. R. Asbridge, R. D. Belian, P. R. Higbie, R. W. Klebesadel, J. G. Laros, and E. R. Tech ( 1985 ), Los Alamos energetic particle sensors at geostationary orbit, AIAA‐85‐0283, p. 1.
dc.identifier.citedreferenceBalikhin, M. A., R. J. Boynton, S. N. Walker, J. E. Borovsky, S. A. Billings, and H. L. Wei ( 2011 ), Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit, Geophys. Res. Lett., 38, L18105, doi: 10.1029/2011GL048980.
dc.identifier.citedreferenceBelian, R. D., D. N. Baker, P. R. Higbie, and E. W. Hones ( 1978 ), High‐resolution energetic particle measurements at 6.6 R E, 2. High‐energy proton drift echoes, J. Geophys. Res., 83, 4857 – 4862, doi: 10.1029/JA083iA10p04857.
dc.identifier.citedreferenceBelian, R. D., G. R. Gisler, T. Cayton, and R. Christensen ( 1992 ), High‐Z energetic particles at geosynchronous orbit during the great solar proton event series of October 1989, J. Geophys. Res., 97, 16,897 – 16,906, doi: 10.1029/92JA01139.
dc.identifier.citedreferenceBelian, R. D., T. E. Cayton, R. A. Christiansen, J. C. Ingraham, M. M. Meier, G. D. Reeves, and A. J. Lazarus ( 1996 ), Relativistic electrons in the outer‐zone: An 11 year cycle; their relation to the solar wind, in AIP Proceedings 383 Workshop on the Earth’s Trapped Particle Environment, edited by G. D. Reeves, 13 pp., Am. Inst. of Phys., Woodbury, New York.
dc.identifier.citedreferenceBeutier, T., D. Boscher, and M. France ( 1995 ), SALAMBO: A three‐dimensional simulation of the proton radiation belt, J. Geophys. Res., 100, 17,181 – 17,188, doi: 10.1029/94JA02728.
dc.identifier.citedreferenceBirn, J., A. V. Artemyev, D. N. Baker, M. Echim, M. Hoshino, and L. M. Zelenyi ( 2012 ), Particle acceleration in the magnetotail and aurora, Space Sci. Rev., 179, 49.
dc.identifier.citedreferenceBoakes, P. D., S. E. Milan, G. A. Abel, M. P. Freeman, G. Chisham, and B. Hubert ( 2011 ), A superposed epoch investigation of the relation between magnetospheric solar wind driving and substorm dynamics with geosynchronous particle injection signatures, J. Geophys. Res., 116, A01214, doi: 10.1029/2010JA016007.
dc.identifier.citedreferenceBorovsky, J. E. ( 2008 ), The flux‐tube texture of the solar wind: Strands of the magnetic carpet at 1 AU?, J. Geophys. Res., 113, A08110, doi: 10.1029/2007JA012684.
dc.identifier.citedreferenceBorovsky, J. E. ( 2010a ), On the variations of the solar‐wind magnetic field about the Parker spiral direction, J. Geophys. Res., 115, A09101, doi: 10.1029/2009JA015040.
dc.identifier.citedreferenceBorovsky, J. E. ( 2010b ), On the contribution of strong discontinuities to the power spectrum of the solar wind, Phys. Rev. Lett., 105, 111102, doi: 10.1103/PhysRevLett.105.111102.
dc.identifier.citedreferenceBorovsky, J. E. ( 2012 ), The effect of sudden wind shear on the Earth’s magnetosphere: Statistics of wind‐shear events and CCMC simulations of magnetotail disconnections, J. Geophys. Res., 117, A06224, doi: 10.1029/2012JA017623.
dc.identifier.citedreferenceBorovsky, J. E., and T. E. Cayton ( 2011 ), Entropy mapping of the outer electron radiation belt between the magnetotail and geosynchronous orbit, J. Geophys. Res., 116, A06216, doi: 10.1029/2011JA016470.
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2010b ), The magnetic field at geosynchronous orbit during high‐speed stream‐driven storms: Connections to the solar wind, the plasma sheet, and the outer electron radiation belt, J. Geophys. Res., 115, A08217, doi: 10.1029/2009JA015116.
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2010c ), Solar‐wind turbulence and shear: A superposed‐epoch analysis of corotating interaction regions at 1 AU, J. Geophys. Res., 115, A10101, doi: 10.1029/2009JA014966.
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2011a ), A survey of the anisotropy of the outer electron radiation belt during high‐speed‐stream‐driven storms, J. Geophys. Res., 116, A05201, doi: 10.1029/2010JA016151.
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2011b ), Evolution of the magnetotail energetic‐electron population during high‐speed‐stream‐driven storms: Evidence for the leakage of the outer electron radiation belt into the Earth’s magnetotail, J. Geophys. Res., 116, A12228, doi: 10.1029/2011JA016713.
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2013 ), The differences between storms driven by helmet‐streamer CIRs and storms driven by pseudostreamer CIRs, J. Geophys. Res. Space Physics, 118, 5506 – 5521, doi: 10.1002/jgra.50524.
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2014 ), Exploring the cross‐correlations and autocorrelations of the ULF indices and incorporating the ULF indices into the systems science of the solar‐wind‐driven magnetosphere, J. Geophys. Res. Space Physics, 119, 4307 – 4334, doi: 10.1002/2014JA019876.
dc.identifier.citedreferenceBorovsky, J. E., and J. T. Steinberg ( 2006 ), The “calm before the storm” in CIR/magnetosphere interactions: Occurrence statistics, solar‐wind statistics, and magnetospheric preconditioning, J. Geophys. Res., 111, A07S10, doi: 10.1029/2005JA011397.
dc.identifier.citedreferenceBorovsky, J. E., M. F. Thomsen, and D. J. McComas ( 1997 ), The superdense plasma sheet: Plasmaspheric origin, solar wind origin, or ionospheric origin?, J. Geophys. Res., 102, 22,089 – 22,097, doi: 10.1029/96JA02469.
dc.identifier.citedreferenceBorovsky, J. E., M. F. Thomsen, D. J. McComas, T. E. Cayton, and D. J. Knipp ( 1998a ), Magnetospheric dynamics and mass flow during the November 1993 storm, J. Geophys. Res., 103, 26,373 – 26,394, doi: 10.1029/97JA03051.
dc.identifier.citedreferenceBorovsky, J. E., M. F. Thomsen, R. C. Elphic, T. E. Cayton, and D. J. McComas ( 1998b ), The transport of plasma sheet material from the distant tail to geosynchronous orbit, J. Geophys. Res., 103, 20,297 – 20,331, doi: 10.1029/97JA03144.
dc.identifier.citedreferenceBorovsky, J. E., R. H. W. Friedel, and M. H. Denton ( 2014 ), Statistically measuring the amount of pitch angle scattering that energetic electrons undergo as they drift across the plasmaspheric drainage plume at geosynchronous orbit, J. Geophys. Res. Space Physics, 119, 1814 – 1826, doi: 10.1002/2013JA019310.
dc.identifier.citedreferenceBorrini, G., J. T. Gosling, S. J. Bame, W. C. Feldman, and J. M. Wilcox ( 1981 ), Solar wind helium and hydrogen structure near the heliospheric current sheet: A signal of coronal streamers at 1 AU, J. Geophys. Res., 86, 4565 – 4573, doi: 10.1029/JA086iA06p04565.
dc.identifier.citedreferenceBoscher, D., S. Bourdarie, R. Friedel, and A. Korth ( 1998 ), Long term dynamic radiation belt model for low energy protons, Geophys. Res. Lett., 25, 4129 – 4132, doi: 10.1029/1998GL900077.
dc.identifier.citedreferenceBourdarie, S., D. Boscher, T. Beutier, J.‐A. Sauvaud, and M. Blanc ( 1997 ), Electron and proton radiation belt dynamic simulations during storm periods: A new asymmetric convection‐diffusion model, J. Geophys. Res., 102, 17,541 – 17,552, doi: 10.1029/97JA01305.
dc.identifier.citedreferenceBruno, R., V. Carbone, P. Veltri, E. Pietropaolo, and B. Bavassano ( 2001 ), Identifying intermittency events in the solar wind, Planet. Space Sci., 49, 1201, doi: 10.1016/S0032-0633(01)00061-7.
dc.identifier.citedreferenceBurlaga, L., E. Sittler, F. Mariani, and R. Schwenn ( 1981 ), Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations, J. Geophys. Res., 86, 6673 – 6684, doi: 10.1029/JA086iA08p06673.
dc.identifier.citedreferenceCayton, T. E. ( 2007 ), Trapped population of ~1 Me protons at geostationary orbit, Rep. LA‐UR‐07‐7169, Los Alamos Natl. Lab., Los Alamos.
dc.identifier.citedreferenceCayton, T. E., and R. D. Belian ( 2007 ), Numerical modeling of the synchronous orbit particle analyzer (SOPA, Version 2) that flew on S/C 1990‐095, LA Rep. LA‐14335, Los Alamos Natl. Lab., Los Alamos, N. M.
dc.identifier.citedreferenceCayton, T. E., R. D. Belian, S. P. Gary, T. A. Fritz, and D. N. Baker ( 1989 ), Energetic electron components at geosynchronous orbit, Geophys. Res. Lett., 16, 147 – 150, doi: 10.1029/GL016i002p00147.
dc.identifier.citedreferenceCornwall, J. M. ( 1972 ), Radial diffusion of ionized helium and protons: A probe for magnetospheric dynamics, J. Geophys. Res., 77, 1756 – 1770, doi: 10.1029/JA077i010p01756.
dc.identifier.citedreferenceCornwall, J. M., F. V. Coroniti, and R. M. Thorne ( 1970 ), Turbulent loss of ring current protons, J. Geophys. Res., 75, 4699 – 4709, doi: 10.1029/JA075i025p04699.
dc.identifier.citedreferenceCrooker, N. U., and J. T. Gosling ( 1999 ), CIR morphology, turbulence, discontinuities, and energetic particles, Space Sci. Rev., 89, 179, doi: 10.1023/A:1005253526438.
dc.identifier.citedreferenceCrooker, N. U., S. K. Antiochos, X. Zhao, and M. Neugebauer ( 2012 ), Global network of slow solar wind, J. Geophys. Res., 117, A04104, doi: 10.1029/2011JA017236.
dc.identifier.citedreferenceDavis, L. R., and J. M. Williamson ( 1963 ), Low‐energy trapped protons, in Space Research: Proceedings of the Third International Conference on Space Research, vol. 3, 365 pp., North‐Holland Co., Amsterdam.
dc.identifier.citedreferenceDavis, L. R., and J. M. Williamson ( 1966 ), Outer zone protons, in Radiation Trapped in the Earth’s Magnetic Field, edited by B. McCormac, pp. 215 – 230, D. Reidel, Dordrecht, Netherlands.
dc.identifier.citedreferenceDenton, M. H., and J. E. Borovsky ( 2008 ), Superposed epoch analysis of high‐speed‐stream effects at geosynchronous orbit: Hot plasma, cold plasma, and the solar wind, J. Geophys. Res., 113, A07216, doi: 10.1029/2007JA012998.
dc.identifier.citedreferenceDenton, M. H., and J. E. Borovsky ( 2009 ), The superdense plasma sheet in the magnetosphere during high‐speed‐steam‐driven storms: Plasma transport timescales, J. Atmos. Sol. Terr. Phys., 71, 1045, doi: 10.1016/j.jastp.2008.04.023.
dc.identifier.citedreferenceDenton, M. H., and J. E. Borovsky ( 2012 ), Magnetosphere response to high‐speed solar wind streams: A comparison of weak and strong driving and the importance of extended periods of fast solar wind, J. Geophys. Res., 117, A00L05, doi: 10.1029/2011JA017124.
dc.identifier.citedreferenceDenton, M. H., J. E. Borovsky, and T. E. Cayton ( 2010 ), A density‐temperature description of the outer electron radiation belt during geomagnetic storms, J. Geophys. Res., 115, A01208, doi: 10.1029/2009JA014183.
dc.identifier.citedreferenceDesorgher, L., E. Fluckiger, P. Buhler, and A. Zehnder ( 2000 ), Modelling of the outer electron belt flux dropout and losses during magnetic storm main phase, Adv. Space Res., 26, 167, doi: 10.1016/S0273-1177(99)01044-3.
dc.identifier.citedreferenceEbihara, Y., M.‐C. Fok, J. B. Blake, and J. F. Fennell ( 2008 ), Magnetic coupling of the ring current and the radiation belt, J. Geophys. Res., 113, A07221, doi: 10.1029/2008JA013267.
dc.identifier.citedreferenceFalthammar, C.‐G. ( 1973 ), Motion of charged particles in the magnetosphere, in Cosmical Geophysics, edited by A. Egeland, O. Holter, and A. Omholt, 121 pp., Universitetsforlaget, Oslo.
dc.identifier.citedreferenceFisk, L. A., and M. A. Lee ( 1980 ), Shock acceleration of energetic particles in corotating interaction regions in the solar wind, Astrophys. J., 237, 620, doi: 10.1086/157907.
dc.identifier.citedreferenceForster, D. R., M. H. Denton, M. Grande, and C. H. Perry ( 2013 ), Inner magnetospheric heavy ion composition during high‐speed stream‐driven storms, J. Geophys. Res. Space Physics, 118, 4066 – 4079, doi: 10.1002/jgra.50292.
dc.identifier.citedreferenceFoullon, C., et al. ( 2011 ), Plasmoid releases in the heliospheric current sheet and associated coronal hole boundary layer evolution, Astrophys. J., 737, 1, doi: 10.1088/0004-637X/737/1/16.
dc.identifier.citedreferenceFraser, B. J., and T. S. Nguyen ( 2001 ), Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere? J. Atmos. Sol. Terr. Phys., 63, 1225, doi: 10.1016/S1364-6826(00)00225-X.
dc.identifier.citedreferenceFreeman, J. W. ( 1964 ), The morphology of the electron distribution in the outer radiation zone and near the magnetospheric boundary as observed by Explorer 12, J. Geophys. Res., 69, 1691 – 1723, doi: 10.1029/JZ069i009p01691.
dc.identifier.citedreferenceFriedel, R. H. W., G. D. Reeves, and T. Obara ( 2002 ), Relativistic electron dynamics in the inner magnetosphere—A review, J. Atmos. Sol. Terr. Phys., 64, 265, doi: 10.1016/S1364-6826(01)00088-8.
dc.identifier.citedreferenceFritz, T. A., and W. N. Spjeldvik ( 1979 ), Simultaneous quiet time observations of energetic radiation belt protons and helium ions: The equatorial α /p ratio near 1 MeV, J. Geophys. Res., 84, 2608 – 2618, doi: 10.1029/JA084iA06p02608.
dc.identifier.citedreferenceGosling, J. T., V. Pizzo, and S. J. Bame ( 1973 ), Anomalously low proton temperatures in the solar wind following interplanetary shock waves—Evidence for magnetic bottles, J. Geophys. Res., 78, 2001 – 2009, doi: 10.1029/JA078i013p02001.
dc.identifier.citedreferenceGosling, J. T., J. R. Asbridge, S. J. Bame, and W. C. Feldman ( 1978 ), Solar wind stream interfaces, J. Geophys. Res., 83, 1401 – 1412, doi: 10.1029/JA083iA04p01401.
dc.identifier.citedreferenceGosling, J. T., G. Borrini, J. R. Asbridge, S. J. Bame, W. C. Feldman, and R. T. Hansen ( 1981 ), Coronal streamers in the solar wind at 1 AU, J. Geophys. Res., 86, 5438 – 5448, doi: 10.1029/JA086iA07p05438.
dc.identifier.citedreferenceGreen, J. C., T. G. Onsager, T. P. O’Brien, and D. N. Baker ( 2004 ), Testing loss mechanisms capable of rapidly depleting relativistic electron flux in the Earth’s outer radiation belt, J. Geophys. Res., 109, A12211, doi: 10.1029/2004JA010579.
dc.identifier.citedreferenceGussenhoven, M. S., D. A. Hardy, and N. Heinemann ( 1983 ), Systematics of the equatorward diffuse auroral boundary, J. Geophys. Res., 88, 5692 – 5708, doi: 10.1029/JA088iA07p05692.
dc.identifier.citedreferenceHigbie, P. R., R. D. Belian, and D. N. Baker ( 1978 ), High‐resolution energetic particle measurements at 6.6 RE 1. Electron micropulsations, J. Geophys. Res., 83, 4851 – 4855.
dc.identifier.citedreferenceIngraham, J. C., T. E. Cayton, R. D. Belian, R. A. Christensen, R. H. W. Friedel, M. M. Meier, G. D. Reeves, and M. Tuszewski ( 2001 ), Substorm injection of relativistic electrons to geosynchronous orbit during the great magnetic storm of March 24, 1991, J. Geophys. Res., 106, 25,759 – 25,776, doi: 10.1029/2000JA000458.
dc.identifier.citedreferenceIntrilligator, D. S., and G. L. Siscoe ( 1994 ), Stream interfaces and energetic ions closer than expected: Analyses of Pioneers 10 and 11 observations, Geophys. Res. Lett., 21, 1117 – 1120, doi: 10.1029/94GL01071.
dc.identifier.citedreferenceJordanova, V. K. ( 2012 ), The role of the Earth’s ring current in radiation belt dynamics, in Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere, Geophys. Monog. Ser., vol. 199, pp. 303 – 314, AGU, Washington, D. C.
dc.identifier.citedreferenceJordanova, V. K., Y. S. Miyoshi, S. Zaharia, M. F. Thomsen, G. D. Reeves, D. S. Evans, C. G. Mouikis, and J. F. Fennell ( 2006 ), Kinetic simulations of ring current evolution during the Geospace Environment Modeling challenge events, J. Geophys. Res., 111, A11S10, doi: 10.1029/2006JA011644.
dc.identifier.citedreferenceKataoka, R., and Y. Miyoshi ( 2006 ), Flux enhancement of radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions, Space Weather, 4, S09004, doi: 10.1029/2005SW000211.
dc.identifier.citedreferenceKilpua, E. K. J., H. Hietala, D. L. Turner, H. E. J. Koskinen, T. I. Pulkkinen, J. V. Rodriguez, G. D. Reeves, S. G. Claudepierre, and H. E. Spence ( 2015 ), Unraveling the drivers of the storm time radiation belt response, Geophys. Res. Lett., 42, 3076 – 3084, doi: 10.1002/2015GL063542.
dc.identifier.citedreferenceKim, K. C., D.‐Y. Lee, H.‐J. Kim, L. R. Lyons, E. S. Lee, M. K. Ozturk, and C. R. Choi ( 2008 ), Numerical calculations of relativistic electron drift loss effect, J. Geophys. Res., 113, A09212, doi: 10.1029/2007JA013011.
dc.identifier.citedreferenceKing, J. H., and N. E. Papitashvili ( 2005 ), Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res., 110, A02104, doi: 10.1029/2004JA010649.
dc.identifier.citedreferenceKozyra, J. U., C. E. Rasmussen, R. H. Miller, and L. R. Lyons ( 1994 ), Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss: 1. Diffusion coefficients and timescales, J. Geophys. Res., 99, 4069 – 4084.
dc.identifier.citedreferenceKurt, V., A. Belov, H. Mavromichalaki, and M. Gerontidou ( 2004 ), Statistical analysis of solar proton events, Ann. Geophys., 22, 2255, doi: 10.5194/angeo-22-2255-2004.
dc.identifier.citedreferenceLam, H.‐L. ( 2004 ), On the prediction of relativistic electron fluence based on its relationship with geomagnetic activity over a solar cycle, J. Atmos. Sol. Terr. Phys., 66, 1703, doi: 10.1016/j.jastp.2004.08.002.
dc.identifier.citedreferenceLanzerotti, L. J., D. C. Webb, and C. W. Arthur ( 1978 ), Geomagnetic field fluctuations at synchronous orbit 2. Radial diffusion, J. Geophys. Res., 83, 3866 – 3870.
dc.identifier.citedreferenceLazutin, L. L., S. N. Kuznetsov, and A. N. Podorolskii ( 2007 ), Dynamics of the radiation belt formed by solar protons during magnetic storms, Geomagn. Aeron., 47, 175, doi: 10.1134/S0016793207020053.
dc.identifier.citedreferenceLazutin, L. L., Y. I. Logachev, E. A. Muravieva, and V. L. Petrov ( 2012 ), Relaxation of electron and proton radiation belts of the Earth after strong magnetic storms, Cosmic Res., 50, 1, doi: 10.1134/S0010952511060062.
dc.identifier.citedreferenceLiemohn, H. ( 1961 ), The lifetime of radiation belt protons with energies between 1 keV and 1 MeV, J. Geophys. Res., 66, 3593 – 3595, doi: 10.1029/JZ066i010p03593.
dc.identifier.citedreferenceLiu, Y. ( 2007 ), Halo coronal mass ejections and configuration of the ambient magnetic fields, Astrophys. J., 654, L171, doi: 10.1086/511385.
dc.identifier.citedreferenceMcDonald, F. B., B. J. Teegarden, J. H. Trainor, T. T. von Rosenvinge, and W. R. Webber ( 1975 ), The interplanetary acceleration of energetic nucleons, Astrophys. J., 203, L149, doi: 10.1086/182040.
dc.identifier.citedreferenceMcGuire, R. E., T. T. von Rosenvinge, and F. B. McDonald ( 1986 ), The composition of solar energetic particles, Astrophys. J., 301, 938, doi: 10.1086/163958.
dc.identifier.citedreferenceMcPherron, R. L., D. N. Baker, and N. U. Crooker ( 2009 ), Role of the Russell‐McPherron effect in the acceleration of relativistic electrons, J. Atmos. Sol. Terr. Phys., 71, 1032, doi: 10.1016/j.jastp.2008.11.002.
dc.identifier.citedreferenceMeredith, N. P., R. B. Horne, R. H. A. Iles, R. M. Thorne, D. Heynderickx, and R. R. Anderson ( 2002 ), Outer zone relativistic electron acceleration associated with substorm‐enhanced whistler mode chorus, J. Geophys. Res., 107 ( A7 ), 1144, doi: 10.1029/2001JA900146.
dc.identifier.citedreferenceMeredith, N. P., R. M. Thorne, R. B. Horne, D. Summers, B. J. Fraser, and R. R. Anderson ( 2003 ), Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES, J. Geophys. Res., 108 ( A6 ), 1250, doi: 10.1029/2002JA009700.
dc.identifier.citedreferenceMewaldt, R. A., E. C. Stone, and R. E. Vogt ( 1979 ), Characteristics of the spectra of protons and alpha particles in recurrent events at 1 AU, Geophys. Res. Lett., 6, 589 – 592, doi: 10.1029/GL006i007p00589.
dc.identifier.citedreferenceMiyoshi, Y., and R. Kataoka ( 2005 ), Ring current ions and radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions, Geophys. Res. Lett., 32, L21105, doi: 10.1029/2005GL024590.
dc.identifier.citedreferenceMorley, S. K., and M. P. Freeman ( 2007 ), On the association between northward turnings on the interplanetary magnetic field and substorm onsets, Geophys. Res. Lett., 34, L08104, doi: 10.1029/2006GL028891.
dc.identifier.citedreferenceMorley, S. K., R. H. W. Friedel, E. L. Spanswick, G. D. Reeves, J. T. Steinberg, J. Koller, T. Cayton, and E. Noveroske ( 2010 ), Dropouts of the outer electron radiation belt in response to solar wind stream interfaces: Global positioning system observations, Proc. R. Soc. A, 466, 3329, doi: 10.1098/rspa.2010.0078.
dc.identifier.citedreferenceNagai, T. ( 1988 ), “Space weather forecast” prediction of relativistic electron intensity at synchronous orbit, Geophys. Res. Lett., 15, 425 – 428, doi: 10.1029/GL015i005p00425.
dc.identifier.citedreferenceNakada, M. P., and G. D. Mead ( 1965 ), Diffusion of protons in the outer radiation belt, J. Geophys. Res., 70, 4777 – 4791, doi: 10.1029/JZ070i019p04777.
dc.identifier.citedreferenceNakada, M. P., J. W. Dungey, and W. N. Hess ( 1965 ), On the origin of outer‐belt protons, 1, J. Geophys. Res., 70, 3529 – 3532, doi: 10.1029/JZ070i015p03529.
dc.identifier.citedreferenceNewell, P. T., T. Sotirelis, K. Liou, C.‐I. Meng, and F. J. Rich ( 2007 ), A nearly universal solar wind‐magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 112, A01206, doi: 10.1029/2006JA012015.
dc.identifier.citedreferenceOnsager, T. G., G. Rostoker, H.‐J. Kim, G. D. Reeves, T. Obara, H. J. Singer, and C. Smithtro ( 2002 ), Radiation belt electron flux dropouts: Local time, radial, and particle‐energy dependence, J. Geophys. Res., 107 ( A11 ), 1382, doi: 10.1029/2001JA000187.
dc.identifier.citedreferenceOnsager, T. G., J. C. Green, G. D. Reeves, and H. J. Singer ( 2007 ), Solar wind and magnetospheric conditions leading to the abrupt loss of outer radiation belt electrons, J. Geophys. Res., 112, A01202, doi: 10.1029/2006JA011708.
dc.identifier.citedreferenceOzeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer ( 2012 ), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi: 10.1029/2011JA017463.
dc.identifier.citedreferenceOzeke, L. G., I. R. Mann, D. L. Turner, K. R. Murphy, A. W. Degeling, I. J. Rae, and D. K. Milling ( 2014 ), Modeling cross L shell impacts of magnetopause shadowing and ULF radial diffusion in the Van Allen belts, Geophys. Res. Lett., 41, 6556 – 6562, doi: 10.1002/2014GL060787.
dc.identifier.citedreferencePalmer, I. D., and J. T. Gosling ( 1978 ), Shock‐associated proton events at large heliocentric distances, J. Geophys. Res., 83, 2037 – 2046, doi: 10.1029/JA083iA05p02037.
dc.identifier.citedreferencePanasyuk, M. ( 2004 ), The ion radiation belts: Experiments and models, in Effects of Space Weather on Technology Infrastructure, edited by I. A. Daglis, 65 pp., Kluwer Acad., Dordrecht, Netherlands.
dc.identifier.citedreferencePaularena, I. I., and J. H. King ( 1999 ), NASA’s IMP 8 spacecraft, in Interball in the ISTP Program, edited by D. G. Sibeck and K. Kudela, 145 pp., Kluwer Acad., Dordrecht, Netherlands.
dc.identifier.citedreferencePierrard, V., and J. Lemaire ( 1996 ), Fitting the AE‐8 energy spectra with two Maxwellian functions, Radiat. Meas., 26, 333 – 337, doi: 10.1016/1350-4487(96)00057-1.
dc.identifier.citedreferenceReames, D. V., H. V. Cane, and T. T. von Rosenvinge ( 1990 ), Energetic particle abundances in solar electron events, Astrophys. J., 357, 259, doi: 10.1086/168912.
dc.identifier.citedreferenceReames, D. V., I. G. Richardson, and L. M. Barbier ( 1991 ), On the differences in element abundances of energetic ions from corotating events and from large solar events, Astrophys. J., 382, L46, doi: 10.1086/186209.
dc.identifier.citedreferenceRichardson, I. G. ( 2004 ), Energetic particles and corotating interaction regions in the solar wind, Space Sci. Rev., 111, 267, doi: 10.1023/B:SPAC.0000032689.52830.3e.
dc.identifier.citedreferenceRichardson, I. G., E. W. Cliver, and H. V. Cane ( 2001 ), Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000, Geophys. Res. Lett., 28, 2569 – 2572, doi: 10.1029/2001GL013052.
dc.identifier.citedreferenceRichter, A. K., and A. H. Luttrell ( 1986 ), Superposed epoch analysis of corotating interaction regions at 0.3 and 1.0 AU: A comparative study, J. Geophys. Res., 91, 5873 – 5878.
dc.identifier.citedreferenceRoederer, J. G. ( 1967 ), On the adiabatic motion of energetic particles in a model magnetosphere, J. Geophys. Res., 72, 981 – 992, doi: 10.1029/JZ072i003p00981.
dc.identifier.citedreferenceSchultz, M., and L. J. Lanzerotti ( 1974 ), Particle Diffusion in the Radiation Belts, Spring, New York.
dc.identifier.citedreferenceSelesnick, R. S. ( 2006 ), Source and loss rates of radiation belt relativistic electrons during magnetic storms, J. Geophys. Res., 111, A04210, doi: 10.1029/2005JA011473.
dc.identifier.citedreferenceSergeev, V. A., S. A. Charnyaeva, S. V. Apatenkov, N. Y. Ganushkina, and S. V. Dubyagin ( 2015 ), Energy‐latitude dispersion patterns near the isotropy boundaries of energetic protons, Ann. Geophys., 33, 1059, doi: 10.5194/angeo-33-1059-2015.
dc.identifier.citedreferenceSheldon, R. B. ( 1994 ), Ion transport and loss in the Earth’s quiet ring current 2. Diffusion and magnetosphere‐ionosphere coupling, J. Geophys. Res., 99, 5705 – 5720, doi: 10.1029/93JA02769.
dc.identifier.citedreferenceShoji, M., and Y. Omura ( 2012 ), Precipitation of highly energetic protons by helium branch electromagnetic ion cyclotron triggered emissions, J. Geophys. Res., 117, A12210, doi: 10.1029/2012JA017933.
dc.identifier.citedreferenceShprits, Y. Y., R. M. Thorne, R. Friedel, G. D. Reeves, J. Fennell, D. N. Baker, and S. G. Kanekal ( 2006 ), Outward radial diffusion driven by losses at magnetopause, J. Geophys. Res., 111, A11214, doi: 10.1029/2006JA011657.
dc.identifier.citedreferenceSiscoe, G. L., B. Goldstein, and A. J. Lazarus ( 1969 ), An east‐eest asymmetry in the solar wind velocity, J. Geophys. Res., 74, 1759 – 1762, doi: 10.1029/JA074i007p01759.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.