Show simple item record

Engineering Temperature‐Dependent Carrier Concentration in Bulk Composite Materials via Temperature‐Dependent Fermi Level Offset

dc.contributor.authorHui, Si
dc.contributor.authorGao, Wenpei
dc.contributor.authorLu, Xu
dc.contributor.authorPanda, Anurag
dc.contributor.authorBailey, Trevor P.
dc.contributor.authorPage, Alexander A.
dc.contributor.authorForrest, Stephen R.
dc.contributor.authorMorelli, Donald T.
dc.contributor.authorPan, Xiaoqing
dc.contributor.authorPipe, Kevin P.
dc.contributor.authorUher, Ctirad
dc.date.accessioned2018-02-05T16:42:33Z
dc.date.available2019-03-01T21:00:18Zen
dc.date.issued2018-01
dc.identifier.citationHui, Si; Gao, Wenpei; Lu, Xu; Panda, Anurag; Bailey, Trevor P.; Page, Alexander A.; Forrest, Stephen R.; Morelli, Donald T.; Pan, Xiaoqing; Pipe, Kevin P.; Uher, Ctirad (2018). "Engineering Temperature‐Dependent Carrier Concentration in Bulk Composite Materials via Temperature‐Dependent Fermi Level Offset." Advanced Energy Materials 8(3): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/141881
dc.description.abstractPrecise control of carrier concentration in both bulk and thin‐film materials is crucial for many solid‐state devices, including photovoltaic cells, superconductors, and high mobility transistors. For applications that span a wide temperature range (thermoelectric power generation being a prime example) the optimal carrier concentration varies as a function of temperature. This work presents a modified modulation doping method to engineer the temperature dependence of the carrier concentration by incorporating a nanosize secondary phase that controls the temperature‐dependent doping in the bulk matrix. This study demonstrates this technique by de‐doping the heavily defect‐doped degenerate semiconductor GeTe, thereby enhancing its average power factor by 100% at low temperatures, with no deterioration at high temperatures. This can be a general method to improve the average thermoelectric performance of many other materials.Temperature‐dependent modulation doping is demonstrated in a GeTe–CuInTe2 composite material. Temperature‐dependent carrier concentration is achieved by controlling the temperature‐dependent Fermi level offset between the GeTe matrix and CuInTe2 inclusions. An enhanced average power factor over a wide temperature range is demonstrated.
dc.publisherWorld Scientific
dc.publisherWiley Periodicals, Inc.
dc.subject.othermodulation doping
dc.subject.otherthermoelectric materials
dc.subject.othercomposite materials
dc.titleEngineering Temperature‐Dependent Carrier Concentration in Bulk Composite Materials via Temperature‐Dependent Fermi Level Offset
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141881/1/aenm201701623.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141881/2/aenm201701623-sup-0001-S1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141881/3/aenm201701623_am.pdf
dc.identifier.doi10.1002/aenm.201701623
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferenceF. Z. Li, L. B. Luo, Q. D. Yang, D. Wu, C. Xie, B. Nie, J. S. Jie, C. Y. Wu, L. Wang, S. H. Yu, Adv. Energy Mater. 2013, 3, 579.
dc.identifier.citedreferenceA. Gozar, G. Logvenov, L. F. Kourkoutis, A. T. Bollinger, L. A. Giannuzzi, D. A. Muller, I. Bozovic, Nature 2008, 455, 782.
dc.identifier.citedreferenceM. H. Whangbo, C. C. Torardi, Science 1990, 249, 1143.
dc.identifier.citedreferenceC. Richter, H. Boschker, W. Dietsche, E. Fillis‐Tsirakis, R. Jany, F. Loder, L. F. Kourkoutis, D. A. Muller, J. R. Kirtley, C. W. Schneider, J. Mannhart, Nature 2013, 502, 528.
dc.identifier.citedreferenceA. Ohtomo, H. Y. Hwang, Nature 2004, 427, 423.
dc.identifier.citedreferenceS. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, J. Mannhart, Science 2006, 313, 1942.
dc.identifier.citedreferenceY. Z. Pei, A. F. May, G. J. Snyder, Adv. Energy Mater. 2011, 1, 291.
dc.identifier.citedreferenceR. Enderlein, N. J. M. Horing, Fundamentals of Semiconductor Physics and Devices, World Scientific, Singapore 1997.
dc.identifier.citedreferenceY. I. Ravich, B. A. Efimova, I. A. Smirnov, Semiconducting Lead Chalcogenides, Plenum, New York 1970.
dc.identifier.citedreferenceS. Hui, M. D. Nielsen, M. R. Homer, D. L. Medlin, J. Tobola, J. R. Salvador, J. P. Heremans, K. P. Pipe, C. Uher, J. Appl. Phys. 2014, 115, 103704.
dc.identifier.citedreferenceH. J. Wu, L. D. Zhao, F. S. Zheng, D. Wu, Y. L. Pei, X. Tong, M. G. Kanatzidis, J. Q. He, Nat. Commun. 2014, 5, 4515.
dc.identifier.citedreferenceK. L. Peng, X. Lu, H. Zhan, S. Hui, X. D. Tang, G. W. Wang, J. Y. Dai, C. Uher, G. Y. Wang, X. Y. Zhou, Energy Environ. Sci. 2016, 9, 454.
dc.identifier.citedreferenceS. A. Yamini, D. R. G. Mitchell, Z. M. Gibbs, R. Santos, V. Patterson, S. Li, Y. Z. Pei, S. X. Dou, G. J. Snyder, Adv. Energy Mater. 2015, 5, 1501047.
dc.identifier.citedreferenceR. Dingle, H. L. Stormer, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 1978, 33, 665.
dc.identifier.citedreferenceY. Z. Chen, F. Trier, T. Wijnands, R. J. Green, N. Gauquelin, R. Egoavil, D. V. Christensen, G. Koster, M. Huijben, N. Bovet, S. Macke, F. He, R. Sutarto, N. H. Andersen, J. A. Sulpizio, M. Honig, G. E. D. K. Prawiroatmodjo, T. S. Jespersen, S. Linderoth, S. Ilani, J. Verbeeck, G. Van Tendeloo, G. Rijnders, G. A. Sawatzky, N. Pryds, Nat. Mater. 2015, 14, 801.
dc.identifier.citedreferenceL. Jun, J. Velasco, E. Huang, S. Kahn, C. Nosiglia, H. Z. Tsai, W. Yang, T. Taniguchi, K. Watanabe, Y. Zhang, G. Zhang, M. Crommie, A. Zettl, F. Wang, Nat. Nanotechnol. 2014, 9, 348.
dc.identifier.citedreferenceD. C. Dillen, K. Kim, E. S. Liu, E. Tutuc, Nat. Nanotechnol. 2014, 9, 116.
dc.identifier.citedreferenceD. Wu, Y. L. Pei, Z. Wang, H. J. Wu, L. Huang, L. D. Zhao, J. Q. He, Adv. Funct. Mater. 2014, 24, 7763.
dc.identifier.citedreferenceY. L. Pei, H. J. Wu, D. Wu, F. S. Zheng, J. Q. He, J. Am. Chem. Soc. 2014, 136, 13902.
dc.identifier.citedreferenceB. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Z. Wang, D. Z. Wang, C. Opeil, M. Dresselhaus, G. Chen, Z. F. Ren, Nano. Lett. 2012, 12, 2077.
dc.identifier.citedreferenceM. Zebarjadi, G. Joshi, G. H. Zhu, B. Yu, A. Minnich, Y. C. Lan, X. W. Wang, M. Dresselhaus, Z. F. Ren, G. Chen, Nano. Lett. 2011, 11, 2225.
dc.identifier.citedreferenceS. V. Faleev, F. Leonard, Phys. Rev. B 2008, 77, 214304.
dc.identifier.citedreferenceD. Wu, L. D. Zhao, S. Q. Hao, Q. K. Jiang, F. S. Zheng, J. W. Doak, H. J. Wu, H. Chi, Y. Gelbstein, C. Uher, C. Wolverton, M. Kanatzidis, J. Q. He, J. Am. Chem. Soc. 2014, 136, 11412.
dc.identifier.citedreferenceJ. Goldak, C. S. Barrett, D. Innes, W. Youdelis, J. Chem. Phys. 1966, 44, 3323.
dc.identifier.citedreferenceH. Sun, X. Lu, H. Chi, D. T. Morelli, C. Uher, Phys. Chem. Chem. Phys. 2014, 16, 15570.
dc.identifier.citedreferenceR. H. Liu, L. L. Xi, H. L. Liu, X. Shi, W. Q. Zhang, L. D. Chen, Chem. Commun. 2012, 48, 3818.
dc.identifier.citedreferenceB. Wang, H. Xiang, T. Nakayama, J. Zhou, B. Li, Phys. Rev. B 2017, 95, 035201.
dc.identifier.citedreferenceD. P. Rai, Sandeep, A. Shankar, A. P. Sakhya, T. P. Sinha, P. Grima‐Gallardo, H. Cabrera, R. Khenata, M. P. Ghimire, R. K. Thapa, J. Alloys Compd. 2017, 699, 1003.
dc.identifier.citedreferenceZ. Zhang, J. T. Yates, Chem. Rev. 2012, 112, 5520.
dc.identifier.citedreferenceJ. M. Luther, P. K. Jain, T. Ewers, A. P. Alivisatos, Nat. Mater. 2011, 10, 361.
dc.identifier.citedreferenceA. Boltasseva, H. A. Atwater, Science 2011, 331, 290.
dc.identifier.citedreferenceX. Z. Lan, S. Masala, E. H. Sargent, Nat. Mater. 2014, 13, 233.
dc.identifier.citedreferenceM. Graetzel, R. A. J. Janssen, D. B. Mitzi, E. H. Sargent, Nature 2012, 488, 304.
dc.identifier.citedreferenceN. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, P. Jarillo‐Herrero, Science 2011, 334, 648.
dc.identifier.citedreferenceJ. Wu, O. Pelleg, G. Logvenov, A. T. Bollinger, Y. J. Sun, G. S. Boebinger, M. Vanevic, Z. Radovic, I. Bozovic, Nat. Mater. 2013, 12, 877.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.