Show simple item record

Toward a “treadmill test” for cognition: Improved prediction of general cognitive ability from the task activated brain

dc.contributor.authorSripada, Chandra
dc.contributor.authorAngstadt, Mike
dc.contributor.authorRutherford, Saige
dc.contributor.authorTaxali, Aman
dc.contributor.authorShedden, Kerby
dc.date.accessioned2020-08-10T20:53:59Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-08-10T20:53:59Z
dc.date.issued2020-08-15
dc.identifier.citationSripada, Chandra; Angstadt, Mike; Rutherford, Saige; Taxali, Aman; Shedden, Kerby (2020). "Toward a “treadmill test” for cognition: Improved prediction of general cognitive ability from the task activated brain." Human Brain Mapping 41(12): 3186-3197.
dc.identifier.issn1065-9471
dc.identifier.issn1097-0193
dc.identifier.urihttps://hdl.handle.net/2027.42/156167
dc.description.abstractGeneral cognitive ability (GCA) refers to a trait‐like ability that contributes to performance across diverse cognitive tasks. Identifying brain‐based markers of GCA has been a longstanding goal of cognitive and clinical neuroscience. Recently, predictive modeling methods have emerged that build whole‐brain, distributed neural signatures for phenotypes of interest. In this study, we employ a predictive modeling approach to predict GCA based on fMRI task activation patterns during the N‐back working memory task as well as six other tasks in the Human Connectome Project dataset (n = 967), encompassing 15 task contrasts in total. We found tasks are a highly effective basis for prediction of GCA: The 2‐back versus 0‐back contrast achieved a 0.50 correlation with GCA scores in 10‐fold cross‐validation, and 13 out of 15 task contrasts afforded statistically significant prediction of GCA. Additionally, we found that task contrasts that produce greater frontoparietal activation and default mode network deactivation—a brain activation pattern associated with executive processing and higher cognitive demand—are more effective in the prediction of GCA. These results suggest a picture analogous to treadmill testing for cardiac function: Placing the brain in a more cognitively demanding task state significantly improves brain‐based prediction of GCA.We investigated prediction of general cognitive ability (GCA) based on fMRI task activation patterns with 15 task contrasts in the Human Connectome Project dataset. The 2‐back versus 0‐back contrast achieved a 0.50 correlation with GCA scores in ten10‐fold cross‐validation analysis. Additionally, we found that task contrasts that produce greater fronto‐parietal activation and default mode network deactivation—a brain activation pattern associated with executive processing and higher cognitive demand—are more effective in GCA prediction.
dc.publisherJohn Wiley & Sons, Inc.
dc.titleToward a “treadmill test” for cognition: Improved prediction of general cognitive ability from the task activated brain
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelKinesiology and Sports
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156167/2/hbm25007.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156167/1/hbm25007_am.pdfen_US
dc.identifier.doi10.1002/hbm.25007
dc.identifier.sourceHuman Brain Mapping
dc.identifier.citedreferenceShashidhara, S., Mitchell, D. J., Erez, Y., & Duncan, J. ( 2019 ). Progressive recruitment of the frontoparietal multiple‐demand system with increased task complexity, time pressure, and reward. Journal of Cognitive Neuroscience, 31, 1617 – 1630.
dc.identifier.citedreferenceSchultz, D. H., & Cole, M. W. ( 2016 ). Higher intelligence is associated with less task‐related brain network reconfiguration. The Journal of Neuroscience, 36, 8551 – 8561.
dc.identifier.citedreferenceCarroll, J. B. ( 1993 ). Human cognitive abilities: A survey of factor‐analytic studies. New York, NY: Cambridge University Press.
dc.identifier.citedreferenceShaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., … Giedd, J. ( 2006 ). Intellectual ability and cortical development in children and adolescents. Nature, 440, 676 – 679.
dc.identifier.citedreferenceShrout, P. E., & Fleiss, J. L. ( 1979 ). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86, 420 – 428.
dc.identifier.citedreferenceSiegel, J. S., Mitra, A., Laumann TO, Seitzman, B. A., Raichle, M., Corbetta, M., & Snyder, A. Z. ( 2017 ). Data quality influences observed links between functional connectivity and behavior. Cerebral Cortex, 1991 ( 27 ), 4492 – 4502.
dc.identifier.citedreferenceSpearman, C. ( 1904 ). ‘General intelligence,’ objectively determined and measured. The American Journal of Psychology, 15, 201 – 292.
dc.identifier.citedreferenceSripada, C., Angstadt, M., Rutherford, S., Kessler, D., Kim, Y., Yee, M., & Levina, E. ( 2019 ). Basic units of inter‐individual variation in resting state connectomes. Scientific Reports, 9, 1900.
dc.identifier.citedreferenceSripada, C., Angstadt, M., Rutherford, S. & Taxali, A. ( 2019 ). Brain network mechanisms of general intelligence, bioRxiv 657205. https://doi.org/10.1101/657205.
dc.identifier.citedreferenceSripada, C., Rutherford, S., Angstadt, M., Thompson, W. K., Luciana, M., Weigard, A., … Heitzeg, M. ( 2019 ). Prediction of Neurocognition in youth from resting state fMRI. Molecular Psychiatry, 1 – 19. https://doi.org/10.1101/495267
dc.identifier.citedreferenceStern, Y., Gazes, Y., Razlighi, Q., Steffener, J., & Habeck, C. ( 2018 ). A task‐invariant cognitive reserve network. NeuroImage, 178, 36 – 45.
dc.identifier.citedreferenceStrenze, T. ( 2007 ). Intelligence and socioeconomic success: A meta‐analytic review of longitudinal research. Intelligence, 35, 401 – 426.
dc.identifier.citedreferenceTurken, U., Whitfield‐Gabrieli, S., Bammer, R., Baldo, J. V., Dronkers, N. F., & Gabrieli, J. D. E. ( 2008 ). Cognitive processing speed and the structure of white matter pathways: Convergent evidence from normal variation and lesion studies. NeuroImage, 42, 1032 – 1044.
dc.identifier.citedreferenceVan Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., Ugurbil, K., & WU‐Minn HCP Consortium. ( 2013 ). The WU‐Minn human connectome project: An overview. NeuroImage, 80, 62 – 79.
dc.identifier.citedreferenceVaroquaux, G., & Poldrack, R. A. ( 2019 ). Predictive models avoid excessive reductionism in cognitive neuroimaging. Current Opinion in Neurobiology, 55, 1 – 6.
dc.identifier.citedreferenceWhitley, E., Batty, G. D., Gale, C. R., Deary, I. J., Tynelius, P., & Rasmussen, F. ( 2010 ). Intelligence in early adulthood and subsequent risk of assault: Cohort study of 1,120,998 Swedish men. Psychosomatic Medicine, 72, 390 – 396.
dc.identifier.citedreferenceWoo, C.‐W., Chang, L. J., Lindquist, M. A., & Wager, T. D. ( 2017 ). Building better biomarkers: Brain models in translational neuroimaging. Nature Neuroscience, 20, 365 – 377.
dc.identifier.citedreferenceWU‐Minn HCP. ( 2017 ). 1200 Subjects Data Release Reference Manual.
dc.identifier.citedreferenceYarkoni, T., & Westfall, J. ( 2017 ). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12, 1100 – 1122.
dc.identifier.citedreferenceYeo, B. T. T., Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., … Buckner, R. L. ( 2011 ). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125 – 1165.
dc.identifier.citedreferenceZinbarg, R. E., Revelle, W., Yovel, I., & Li, W. ( 2005 ). Cronbach’s α, Revelle’s β, and McDonald’s ω H: Their relations with each other and two alternative conceptualizations of reliability. Psychometrika, 70, 123 – 133.
dc.identifier.citedreferenceAnticevic, A., Cole, M. W., Murray, J. D., Corlett, P. R., Wang, X. J., & Krystal, J. H. ( 2012 ). The role of default network deactivation in cognition and disease. Trends in Cognitive Sciences, 16, 584 – 592.
dc.identifier.citedreferenceAnticevic, A., Repovs, G., Shulman, G. L., & Barch, D. M. ( 2010 ). When less is more: TPJ and default network deactivation during encoding predicts working memory performance. NeuroImage, 49, 2638 – 2648.
dc.identifier.citedreferenceBaddeley, A. ( 2012 ). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1 – 29.
dc.identifier.citedreferenceBarch, D. M., Burgess, G. C., Harms, M. P., Petersen, S. E., Schlaggar, B. L., Corbetta, M., … WU‐Minn HCP Consortium. ( 2013 ). Function in the human connectome: Task‐fMRI and individual differences in behavior. NeuroImage, 80, 169 – 189.
dc.identifier.citedreferenceBatty, G. D., Mortensen, E. L., & Osler, M. ( 2005 ). Childhood IQ in relation to later psychiatric disorder: Evidence from a Danish birth cohort study. The British Journal of Psychiatry, 187, 180 – 181.
dc.identifier.citedreferenceBehzadi, Y., Restom, K., Liau, J., & Liu, T. T. ( 2007 ). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37, 90 – 101.
dc.identifier.citedreferenceBraver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. ( 1997 ). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 49 – 62.
dc.identifier.citedreferenceCabeza, R., & Nyberg, L. ( 2000 ). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 1 – 47.
dc.identifier.citedreferenceCarroll, J. B. ( 2003 ). The higher‐stratum structure of cognitive abilities: Current evidence supports g and about ten broad factors. In The scientific study of general intelligence (pp. 5 – 21 ). Oxford, UK: Elsevier.
dc.identifier.citedreferenceCole, M. W., & Schneider, W. ( 2007 ). The cognitive control network: Integrated cortical regions with dissociable functions. NeuroImage, 37, 343 – 360.
dc.identifier.citedreferenceColom, R., Haier, R. J., Head, K., Álvarez‐Linera, J., Quiroga, M. Á., Shih, P. C., & Jung, R. E. ( 2009 ). Gray matter correlates of fluid, crystallized, and spatial intelligence: Testing the P‐FIT model. Intelligence, 37, 124 – 135.
dc.identifier.citedreferenceConway, A. R., Kane, M. J., & Engle, R. W. ( 2003 ). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7, 547 – 552.
dc.identifier.citedreferenceCox, S. R., Ritchie, S. J., Fawns‐Ritchie, C., Tucker‐Drob, E. M., & Deary, I. J. ( 2019 ). Structural brain imaging correlates of general intelligence in UKbiobank. Intelligence, 76, 101376.
dc.identifier.citedreferenceCui, Z., Li, H., Xia, C. H., Larsen, B., Adebimpe, A., Baum, G. L., … Satterthwaite, T. D. ( 2020 ). Individual variation in functional topography of association networks in youth. Neuron, 106, 340.e8 – 353.e8. https://doi.org/10.1016/j.neuron.2020.01.029
dc.identifier.citedreferenceD’Esposito, M., Postle, B. R., & Rypma, B. ( 2000 ). Prefrontal cortical contributions to working memory: Evidence from event‐related fMRI studies. In W. X. Schneider, A. M. Owen, & J. Duncan (Eds.), Executive Control and the Frontal Lobe: Current Issues (pp. 3 – 11 ). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-59794-7_2
dc.identifier.citedreferenceDeary, I. J., Penke, L., & Johnson, W. ( 2010 ). The neuroscience of human intelligence differences. Nature Reviews Neuroscience, 11, 201 – 211.
dc.identifier.citedreferenceDeYoung, C. G., Shamosh, N. A., Green, A. E., Braver, T. S., & Gray, J. R. ( 2009 ). Intellect as distinct from openness: Differences revealed by fMRI of working memory. Journal of Personality and Social Psychology, 97, 883 – 892.
dc.identifier.citedreferenceDubois, J., Galdi, P., Paul, L. K., & Adolphs, R. ( 2018 ). A distributed brain network predicts general intelligence from resting‐state human neuroimaging data. Philosophical Transactions of the Royal Society B, 373, 20170284.
dc.identifier.citedreferenceDuncan, J. ( 2010 ). The multiple‐demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14, 172 – 179.
dc.identifier.citedreferenceDuncan, J., & Owen, A. M. ( 2000 ). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475 – 483.
dc.identifier.citedreferenceDuncan, J., Schramm, M., Thompson, R., & Dumontheil, I. ( 2012 ). Task rules, working memory, and fluid intelligence. Psychonomic Bulletin & Review, 19, 864 – 870.
dc.identifier.citedreferenceDuncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., … Emslie, H. ( 2000 ). A neural basis for general intelligence. Science, 289, 457 – 460.
dc.identifier.citedreferenceEngle, R. W., & Kane, M. J. ( 2004 ). Executive attention, working memory capacity, and a two‐factor theory of cognitive control. In The psychology of learning and motivation: Advances in research and theory. San Diego, CA: Elsevier.
dc.identifier.citedreferenceEngle, R. W., Kane, M. J., & Tuholski, S. W. ( 2001 ). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex. Memory & Cognition, 29, 484 – 492.
dc.identifier.citedreferenceEsposito, F., Bertolino, A., Scarabino, T., Latorre, V., Blasi, G., Popolizio, T., … di Salle, F. ( 2006 ). Independent component model of the default‐mode brain function: Assessing the impact of active thinking. Brain Research Bulletin, 70, 263 – 269.
dc.identifier.citedreferenceFedorenko, E., Duncan, J., & Kanwisher, N. ( 2013 ). Broad domain generality in focal regions of frontal and parietal cortex. Proceedings of the National Academy of Sciences, 110, 16616 – 16621.
dc.identifier.citedreferenceFinn, E. S., Scheinost, D., Finn, D. M., Shen, X., Papademetris, X., & Constable, R. T. ( 2017 ). Can brain state be manipulated to emphasize individual differences in functional connectivity? Neuroimage, 160, 140 – 151.
dc.identifier.citedreferenceFinn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., … Constable, R. T. ( 2015 ). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18, 1664 – 1671.
dc.identifier.citedreferenceFreedman, D., & Lane, D. ( 1983 ). A nonstochastic interpretation of reported significance levels. Journal of Business & Economic Statistics, 1, 292 – 298.
dc.identifier.citedreferenceGale, C. R., Batty, G. D., Tynelius, P., Deary, I. J., & Rasmussen, F. ( 2010 ). Intelligence in early adulthood and subsequent hospitalisation and admission rates for the whole range of mental disorders: Longitudinal study of 1,049,663 men. Epidemiology, 21, 70 – 77.
dc.identifier.citedreferenceGlasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., … van Essen, D. C. ( 2016 ). A multi‐modal parcellation of human cerebral cortex. Nature, 536, 171 – 178.
dc.identifier.citedreferenceGlasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., … WU‐Minn HCP Consortium. ( 2013 ). The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage, 80, 105 – 124.
dc.identifier.citedreferenceGottfredson, L. S. ( 1997 ). Why g matters: The complexity of everyday life. Intelligence, 24, 79 – 132.
dc.identifier.citedreferenceGray, J. R., Chabris, C. F., & Braver, T. S. ( 2003 ). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316 – 322.
dc.identifier.citedreferenceGreene, A. S., Gao, S., Scheinost, D., & Constable, R. T. ( 2018 ). Task‐induced brain state manipulation improves prediction of individual traits. Nature Communications, 9, 1 – 13.
dc.identifier.citedreferenceHorn, J. L., & Noll, J. ( 1997 ). Human cognitive capabilities: Gf‐Gc theory. In D. P. Flanagan, J. L. Genshaft, & P. L. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests, and issues (pp. 53 – 91 ). New York, NY: The Guilford Press.
dc.identifier.citedreferenceJung, R. E., & Haier, R. J. ( 2007 ). The parieto‐frontal integration theory (P‐FIT) of intelligence: Converging neuroimaging evidence. The Behavioral and Brain Sciences, 30, 135 – 154.
dc.identifier.citedreferenceKyllonen, P. C., & Christal, R. E. ( 1990 ). Reasoning ability is (little more than) working‐memory capacity?! Intelligence, 14, 389 – 433.
dc.identifier.citedreferenceLee, K. H., Choi, Y. Y., Gray, J. R., Cho, S. H., Chae, J. H., Lee, S., & Kim, K. ( 2006 ). Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. NeuroImage, 29, 578 – 586.
dc.identifier.citedreferenceLevina, E. & Bickel, P. J. Maximum likelihood estimation of intrinsic dimension. in Proceedings of the 17th International Conference on Neural Information Processing Systems 777–784 (MIT Press, 2004 ).
dc.identifier.citedreferenceLuders, E., Narr, K. L., Thompson, P. M., & Toga, A. W. ( 2009 ). Neuroanatomical correlates of intelligence. Intelligence, 37, 156 – 163.
dc.identifier.citedreferenceMackintosh, N., & Mackintosh, N. J. ( 2011 ). IQ and human intelligence. New York, NY: Oxford University Press.
dc.identifier.citedreferenceMcDaniel, M. A. ( 2005 ). Big‐brained people are smarter: A meta‐analysis of the relationship between in vivo brain volume and intelligence. Intelligence, 33, 337 – 346.
dc.identifier.citedreferenceMcGrew, K. S. ( 2009 ). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37, 1 – 10.
dc.identifier.citedreferenceMcKiernan, K. A., Kaufman, J. N., Kucera‐Thompson, J., & Binder, J. R. ( 2003 ). A parametric manipulation of factors affecting task‐induced deactivation in functional neuroimaging. Journal of Cognitive Neuroscience, 15, 394 – 408.
dc.identifier.citedreferenceMiller, E. K., & Cohen, J. D. ( 2001 ). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167 – 202.
dc.identifier.citedreferenceNeisser, U., Boodoo, G., Bouchard, T. J.,. J., Boykin, A. W., Brody, N., Ceci, S. J., … Urbina, S. ( 1996 ). Intelligence: Knowns and unknowns. The American Psychologist, 51, 77 – 101.
dc.identifier.citedreferenceNeubauer, A. C., & Fink, A. ( 2009 ). Intelligence and neural efficiency. Neuroscience and Biobehavioral Reviews, 33, 1004 – 1023.
dc.identifier.citedreferenceNiendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. ( 2012 ). Meta‐analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12, 241 – 268.
dc.identifier.citedreferencePietschnig, J., Penke, L., Wicherts, J. M., Zeiler, M., & Voracek, M. ( 2015 ). Meta‐analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean? Neuroscience and Biobehavioral Reviews, 57, 411 – 432.
dc.identifier.citedreferencePochon, J. B., Levy, R., Fossati, P., Lehericy, S., Poline, J. B., Pillon, B., … Dubois, B. ( 2002 ). The neural system that bridges reward and cognition in humans: An fMRI study. Proceedings of the National Academy of Sciences, 99, 5669 – 5674.
dc.identifier.citedreferencePoldrack, R. A., Huckins, G., & Varoquaux, G. ( 2019 ). Establishment of best practices for evidence for prediction: A review. JAMA Psychiatry. https://doi.org/10.1001/jamapsychiatry.2019.3671
dc.identifier.citedreferencePower, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., … Petersen, S. E. ( 2011 ). Functional network organization of the human brain. Neuron, 72, 665 – 678.
dc.identifier.citedreferenceRee, M. J., Earles, J. A., & Teachout, M. S. ( 1994 ). Predicting job performance: Not much more than g. The Journal of Applied Psychology, 79, 518 – 524.
dc.identifier.citedreferenceRevelle, W. ( 2016 ). psych: Procedures for Psychological, Psychometric, and Personality Research.
dc.identifier.citedreferenceRosenberg, M. D., Casey, B. J., & Holmes, A. J. ( 2018 ). Prediction complements explanation in understanding the developing brain. Nature Communications, 9, 1 – 13.
dc.identifier.citedreferenceSalimi‐Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F., Griffanti, L., & Smith, S. M. ( 2014 ). Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers. NeuroImage, 90, 449 – 468.
dc.identifier.citedreferenceScheinost, D., Noble, S., Horien, C., Greene, A. S., Lake, E. M. R., Salehi, M., … Constable, R. T. ( 2019 ). Ten simple rules for predictive modeling of individual differences in neuroimaging. NeuroImage, 193, 35 – 45.
dc.identifier.citedreferenceSchmid, J., & Leiman, J. M. ( 1957 ). The development of hierarchical factor solutions. Psychometrika, 22, 53 – 61.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.