Show simple item record

Making or Breaking Metal- Dependent Catalytic Activity: The Role of Stammers in Designed Three- Stranded Coiled Coils

dc.contributor.authorPinter, Tyler B. J.
dc.contributor.authorManickas, Elizabeth C.
dc.contributor.authorTolbert, Audrey E.
dc.contributor.authorKoebke, Karl J.
dc.contributor.authorDeb, Aniruddha
dc.contributor.authorPenner‐hahn, James E.
dc.contributor.authorPecoraro, Vincent L.
dc.date.accessioned2020-11-04T16:02:22Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-11-04T16:02:22Z
dc.date.issued2020-11-09
dc.identifier.citationPinter, Tyler B. J.; Manickas, Elizabeth C.; Tolbert, Audrey E.; Koebke, Karl J.; Deb, Aniruddha; Penner‐hahn, James E. ; Pecoraro, Vincent L. (2020). "Making or Breaking Metal- Dependent Catalytic Activity: The Role of Stammers in Designed Three- Stranded Coiled Coils." Angewandte Chemie 132(46): 20625-20629.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/163477
dc.description.abstractWhile many life- critical reactions would be infeasibly slow without metal cofactors, a detailed understanding of how protein structure can influence catalytic activity remains elusive. Using de novo designed three- stranded coiled coils (TRI and Grand peptides formed using a heptad repeat approach), we examine how the insertion of a three residue discontinuity, known as a stammer insert, directly adjacent to a (His)3 metal binding site alters catalytic activity. The stammer, which locally alters the twist of the helix, significantly increases copper- catalyzed nitrite reductase activity (CuNiR). In contrast, the well- established zinc- catalyzed carbonic anhydrase activity (p- nitrophenyl acetate, pNPA) is effectively ablated. This study illustrates how the perturbation of the protein sequence using non- coordinating and non- acid base residues in the helical core can perturb metalloenzyme activity through the simple expedient of modifying the helical pitch adjacent to the catalytic center.The addition of a stammer discontinuity within a de novo designed three- stranded coiled coil containing a symmetric (His)3 metal binding site enhances copper nitrite reductase activity and ablates zinc esterase activity. These results suggest catalytic activity of designed α- helical systems can be modulated by inclusion of discontinuity insertions and deletions.
dc.publisherWiley Periodicals, Inc.
dc.publisherACS Publications
dc.subject.otherprotein design
dc.subject.othercoiled coils
dc.subject.otherenzyme catalysis
dc.subject.othermetalloproteins
dc.subject.otherstammers
dc.titleMaking or Breaking Metal- Dependent Catalytic Activity: The Role of Stammers in Designed Three- Stranded Coiled Coils
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163477/3/ange202008356_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163477/2/ange202008356-sup-0001-misc_information.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163477/1/ange202008356.pdfen_US
dc.identifier.doi10.1002/ange.202008356
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceA. Lombardi, F. Pirro, O. Maglio, M. Chino, W. F. DeGrado, Acc. Chem. Res. 2019, 52, 1148 - 1159;
dc.identifier.citedreferenceA. F. Peacock, Curr. Opin. Chem. Biol. 2013, 17, 934 - 939;
dc.identifier.citedreferenceT. Masuda, F. Goto, T. Yoshihara, B. Mikami, J. Biol. Chem. 2010, 285, 4049 - 4059;
dc.identifier.citedreferenceE. Moutevelis, D. N. Woolfson, J. Mol. Biol. 2009, 385, 726 - 732;
dc.identifier.citedreferenceS. Eshaghi, D. Niegowski, A. Kohl, D. M. Molina, S. A. Lesley, P. Nordlund, Science 2006, 313, 354 - 357.
dc.identifier.citedreferenceF. Yu, V. M. Cangelosi, M. L. Zastrow, M. Tegoni, J. S. Plegaria, A. G. Tebo, C. S. Mocny, L. Ruckthong, H. Qayyum, V. L. Pecoraro, Chem. Rev. 2014, 114, 3495 - 3578.
dc.identifier.citedreferenceT. B. J. Pinter, K. J. Koebke, V. L. Pecoraro, Angew. Chem. Int. Ed. 2020, 59, 7678 - 7699; Angew. Chem. 2020, 132, 7750 - 7773.
dc.identifier.citedreferenceM. L. Zastrow, A. F. A. Peacock, J. A. Stuckey, V. L. Pecoraro, Nat. Chem. 2012, 4, 118 - 123.
dc.identifier.citedreferenceM. Tegoni, F. Yu, M. Bersellini, J. E. Penner-Hahn, V. L. Pecoraro, Proc. Natl. Acad. Sci. USA 2012, 109, 21234.
dc.identifier.citedreferenceJ. Godden, S. Turley, D. C. Teller, E. T. Adman, M. Liu, W. Payne, J. LeGall, Science 1991, 253, 438 - 442.
dc.identifier.citedreferenceF. Yu, J. E. Penner-Hahn, V. L. Pecoraro, J. Am. Chem. Soc. 2013, 135, 18096 - 18107.
dc.identifier.citedreferenceK. J. Koebke, F. Yu, E. Salerno, C. Van Stappen, A. G. Tebo, J. E. Penner-Hahn, V. L. Pecoraro, Angew. Chem. Int. Ed. 2018, 57, 3954 - 3957; Angew. Chem. 2018, 130, 4018 - 4021.
dc.identifier.citedreference 
dc.identifier.citedreferenceV. L. Pecoraro, L. Ruckthong, J. A. Stuckey, Chem. Eur. J. 2019, 25, 6773 - 6787;
dc.identifier.citedreferenceL. Ruckthong, M. L. Zastrow, J. A. Stuckey, V. L. Pecoraro, J. Am. Chem. Soc. 2016, 138, 11979 - 11988.
dc.identifier.citedreference 
dc.identifier.citedreferenceP. Hosseinzadeh, Y. Lu, Biochim. Biophys. Acta Bioenerg. 2016, 1857, 557 - 581;
dc.identifier.citedreferenceF. Nastri, D. D’Alonzo, L. Leone, G. Zambrano, V. Pavone, A. Lombardi, Trends Biochem. Sci. 2019, 44, 1022 - 1040.
dc.identifier.citedreferenceJ. H. Brown, C. Cohen, D. A. Parry, Proteins: Struct. Funct. Genet. 1996, 26, 134 - 145.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. Lupas, Trends Biochem. Sci. 1996, 21, 375 - 382;
dc.identifier.citedreferenceM. Gruber, A. N. Lupas, Trends Biochem. Sci. 2003, 28, 679 - 685;
dc.identifier.citedreferenceA. N. Lupas, J. Bassler, Trends Biochem. Sci. 2017, 42, 130 - 140.
dc.identifier.citedreferenceE. Khazina, V. Truffault, R. Büttner, S. Schmidt, M. Coles, O. Weichenrieder, Nat. Struct. Mol. Biol. 2011, 18, 1006 - 1014.
dc.identifier.citedreference 
dc.identifier.citedreferenceK.-H. Lee, M. Matzapetakis, S. Mitra, E. N. G. Marsh, V. L. Pecoraro, J. Am. Chem. Soc. 2004, 126, 9178 - 9179;
dc.identifier.citedreferenceK. H. Lee, C. Cabello, L. Hemmingsen, E. N. G. Marsh, V. L. Pecoraro, Angew. Chem. Int. Ed. 2006, 45, 2864 - 2868; Angew. Chem. 2006, 118, 2930 - 2934;
dc.identifier.citedreferenceL. Ruckthong, A. F. A. Peacock, C. E. Pascoe, L. Hemmingsen, J. A. Stuckey, V. L. Pecoraro, Chem. Eur. J. 2017, 23, 8232 - 8243.
dc.identifier.citedreferenceF. Yu, Doctoral thesis, University of Michigan (Ann Arbor, Michigan, USA), 2014.
dc.identifier.citedreferenceJ. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem. 2004, 25, 1157 - 1174.
dc.identifier.citedreferenceJ. Wang, W. Wang, P. A. Kollman, D. A. Case, J. Mol. Graphics Modell. 2006, 25, 247 - 260.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. Andreini, I. Bertini, A. Rosato, Acc. Chem. Res. 2009, 42, 1471 - 1479;
dc.identifier.citedreferenceD. Buccella, M. H. Lim, J. R. Morrow, Metals in Biology: From Metallomics to Trafficking, ACS Publications, Washington, 2019;
dc.identifier.citedreferenceW. Maret, Int. J. Mol. Sci. 2016, 17, 66;
dc.identifier.citedreferenceR. R. Crichton, Biological inorganic chemistry: a new introduction to molecular structure and function, Elsevier, Amsterdam, 2012;
dc.identifier.citedreferenceJ. Liu, S. Chakraborty, P. Hosseinzadeh, Y. Yu, S. Tian, I. Petrik, A. Bhagi, Y. Lu, Chem. Rev. 2014, 114, 4366 - 4469.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. Dudev, C. Lim, Annu. Rev. Biophys. 2008, 37, 97 - 116;
dc.identifier.citedreferenceJ. Riordan, B. Vallee, Protein-Metal Interactions, Springer, Heidelberg, 1974, pp.- 33 - 57;
dc.identifier.citedreferenceK. J. Waldron, J. C. Rutherford, D. Ford, N. J. Robinson, Nature 2009, 460, 823;
dc.identifier.citedreferenceK. J. Waldron, N. J. Robinson, Nat. Rev. Microbiol. 2009, 7, 25 - 35;
dc.identifier.citedreferenceY. Lu, S. M. Berry, T. D. Pfister, Chem. Rev. 2001, 101, 3047 - 3080.
dc.identifier.citedreference 
dc.identifier.citedreferenceY. Lu, N. Yeung, N. Sieracki, N. M. Marshall, Nature 2009, 460, 855;
dc.identifier.citedreferenceI. V. Korendovych, W. F. DeGrado, Q. Rev. Biophys. 2020, 53, e3;
dc.identifier.citedreferenceW. M. Dawson, G. G. Rhys, D. N. Woolfson, Curr. Opin. Chem. Biol. 2019, 52, 102 - 111.
dc.identifier.citedreference 
dc.identifier.citedreferenceR. S. Hodges, Biochem. Cell Biol. 1996, 74, 133 - 154;
dc.identifier.citedreferenceC. Cohen, D. A. Parry, Proteins: Struct. Funct. Genet. 1990, 7, 1 - 15;
dc.identifier.citedreferenceD. N. Woolfson, Fibrous Proteins: Structures and Mechanisms, Springer, Heidelberg, 2017, pp.- 35 - 61.
dc.identifier.citedreference 
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.