Show simple item record

Marginalized maximum a posteriori estimation for the four‐parameter logistic model under a mixture modelling framework

dc.contributor.authorMeng, Xiangbin
dc.contributor.authorXu, Gongjun
dc.contributor.authorZhang, Jiwei
dc.contributor.authorTao, Jian
dc.date.accessioned2020-12-02T14:41:57Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-12-02T14:41:57Z
dc.date.issued2020-11
dc.identifier.citationMeng, Xiangbin; Xu, Gongjun; Zhang, Jiwei; Tao, Jian (2020). "Marginalized maximum a posteriori estimation for the four‐parameter logistic model under a mixture modelling framework." British Journal of Mathematical and Statistical Psychology : 51-82.
dc.identifier.issn0007-1102
dc.identifier.issn2044-8317
dc.identifier.urihttps://hdl.handle.net/2027.42/163643
dc.publisherWiley Periodicals, Inc.
dc.publisherAkadémiai Kiadó
dc.subject.othermarginalized maximum a posteriori estimation
dc.subject.otherexpectation–maximization algorithm
dc.subject.otherfour‐parameter logistic model
dc.subject.othermixture model
dc.titleMarginalized maximum a posteriori estimation for the four‐parameter logistic model under a mixture modelling framework
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPsychology
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163643/2/bmsp12185.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163643/1/bmsp12185_am.pdfen_US
dc.identifier.doi10.1111/bmsp.12185
dc.identifier.sourceBritish Journal of Mathematical and Statistical Psychology
dc.identifier.citedreferenceRulison, K. L., & Loken, E. ( 2009 ). I’ve fallen and I can’t get up: Can high‐ability students recover from early mistakes in CAT? Applied Psychological Measurement, 33, 83 – 101. https://doi.org/10.1177/0146621608324023
dc.identifier.citedreferenceMeng, X. B., Tao, J., & Chen, S. L. ( 2016 ). Warm’s weighted maximum likelihood estimation of latent trait in the four‐parameter logistic model. Acta Psychologica Sinica, 48, 1047 – 1056. https://doi.org/10.3724/SP.J.1041.2016.01047
dc.identifier.citedreferenceMislevy, R. J. ( 1986 ). Bayes modal estimation in item response models. Psychometrika, 51, 177 – 195. https://doi.org/10.1007/BF02293979
dc.identifier.citedreferenceMislevy, R. J., & Bock, R. D. ( 1990 ). BILOG: Item analysis and test scoring with binary logistic models [Computer program]. Chicago, IL: Scientific Software.
dc.identifier.citedreferenceNeyman, J., & Scott, E. L. ( 1948 ). Consistent estimates based on partially consistent observations. Econometrica, 16, 1 – 32. https://doi.org/10.2307/1914288
dc.identifier.citedreferenceOgasawara, H. ( 2012 ). Asymptotic expansions for the ability estimator in item response theory. Computational Statistics, 27, 661 – 683. https:doi.org10.1007/s00180-011-0282-0
dc.identifier.citedreferencePeneld, R. D., & Bergeron, J. M. ( 2005 ). Applying a weighted maximum likelihood latent trait estimator to the generalized partial credit model. Applied Psychological Measurement, 29, 218 – 233. https://doi.org/10.1177/0146621604270412
dc.identifier.citedreferenceReise, S. P., & Waller, N. G. ( 2003 ). How many IRT parameters does it take to model psychopathology items? Psychological Methods, 8, 164 – 184. https://doi.org/10.1037/1082-989X.8.2.164
dc.identifier.citedreferenceRogers, H., & Hattie, J. ( 1987 ). A Monte Carlo investigation of several person and item fit statistics for item response models. Applied Psychological Measurement, 11, 47 – 57. https://doi.org/10.1177/014662168701100103
dc.identifier.citedreferenceRouse, S. V., Finger, M. S., & Butcher, J. N. ( 1999 ). Advances in clinical personality measurement: An item response theory analysis of the MMPI‐2 PSY‐5 scales. Journal of Personality Assessment, 72, 282 – 307. https://doi.org/10.1207/S15327752JP720212
dc.identifier.citedreferenceRupp, A. A. ( 2003 ). Item response modeling with BILOG‐MG and MULTILOG for Windows. International Journal of Testing, 3, 365 – 384. https://doi.org/10.1207/S15327574IJT0304_5
dc.identifier.citedreferenceSan Martin, E., del Pino, G., & De Boeck, P. ( 2006 ). IRT models for ability‐based guessing. Applied Psychological Measurement, 30, 183 – 203. https://doi.org/10.1177/0146621605282773
dc.identifier.citedreferenceSwaminathan, H., Hambleton, R. K., & Rogers, H. J. ( 2006 ). Assessing the fit of item response theory models. In C. R. Rao & S. Sinharay (Eds.), Handbook of Statistics, Volume 26: Psychometrics (pp. 683 – 715 ). Amsterdam, Netherlands: North‐Holland.
dc.identifier.citedreferenceTao, J., Shi, N. Z., & Chang, H. H. ( 2012 ). Item‐weighted likelihood method for ability estimation in tests composed of both dichotomous and polytomous items. Journal of Educational and Behavioral Statistics, 37, 298 – 315. https://doi.org/10.3102/1076998610393969
dc.identifier.citedreferenceTavares, H. R., de Andrade, D. F., & Pereira, C. A. ( 2004 ). Detection of determinant genes and diagnostic via item response theory. Genetics and Molecular Biology, 27, 679 – 685. https://doi.org/10.1590/S1415-47572004000400033
dc.identifier.citedreferenceVon Davier, M. ( 2009 ). Is there need for the 3PL model? Guess what? Measurement: Interdisciplinary Research and Perspective, 7, 110 – 114. https://doi.org/10.1080/15366360903117079
dc.identifier.citedreferenceWaller, N. G., & Feuerstahler, S. ( 2017 ). Bayesian modal estimation of the four‐parameter item response model in real, realistic, and idealized data sets. Multivariate Behavioral Research, 52, 350 – 370. https://doi.org/10.1080/00273171.2017.1292893
dc.identifier.citedreferenceWaller, N. G., & Reise, S. P. ( 2010 ). Measuring psychopathology with nonstandard item response theory models: Fitting the four‐parameter model to the Minnesota Multiphasic Personality Inventory. In S. Embretson (Ed.), Measuring psychological constructs: Advances in model based approaches. Washington, DC: American Psychological Association.
dc.identifier.citedreferenceWang, C., Chang, H.‐H., & Douglas, J. A. ( 2013 ). The linear transformation model with frailties for the analysis of item response times. British Journal of Mathematical and Statistical Psychology, 66, 144 – 168. https://doi.org/10.1111/j.2044-8317.2012.02045.x
dc.identifier.citedreferenceWang, S., & Wang, T. ( 2001 ). Precision of Warm’s weighted likelihood estimates for a polytomous model in computerized adaptive testing. Applied Psychological Measurement, 25, 317 – 331. https://doi.org/10.1177/01466210122032163
dc.identifier.citedreferenceWarm, T. A. ( 1989 ). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54, 427 – 450. https://doi.org/10.1007/BF02294627
dc.identifier.citedreferenceAkaike, H. ( 1973 ). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csáki (Eds.), Second international symposium on information theory (pp. 267 – 281 ). Budapest, Hungary: Akadémiai Kiadó.
dc.identifier.citedreferenceBaker, F. B., & Kim, S. H. ( 2004 ). Item response theory: Parameter estimation techniques. New York, NY: Marcel Dekker.
dc.identifier.citedreferenceBarton, M. A., & Lord, F. M. ( 1981 ). An upper asymptote for the three‐parameter logistic item‐response model (Technical Report No. 80‐20). Princeton, NJ: Educational Testing Service.
dc.identifier.citedreferenceBéguin, A. A., & Glas, C. A. ( 2001 ). MCMC estimation and some model‐fit analysis of multidimensional IRT models. Psychometrika, 66, 541 – 561. https://doi.org/10.1007/BF02296195
dc.identifier.citedreferenceCulpepper, S. A. ( 2016 ). Revisiting the 4‐parameter item response model: Bayesian estimation and application. Psychometrika, 81, 1142 – 1163. https://doi.org/10.1007/s11336-015-9477-6
dc.identifier.citedreferenceCulpepper, S. A. ( 2017 ). The prevalence and implications of slipping on low‐stakes, large‐scale assessments. Journal of Educational and Behavioral Statistics, 42, 706 – 725. https://doi.org/10.3102/1076998617705653
dc.identifier.citedreferencede la Torre, J., & Douglas, J. A. ( 2004 ). Higher‐order latent trait models for cognitive diagnosis. Psychometrika, 69, 333 – 353. https://doi.org/10.1007/BF02295640
dc.identifier.citedreferenceFeuerstahler, L. M., & Waller, N. G. ( 2014 ). Estimation of the 4‐parameter model with marginal maximum likelihood. Multivariate Behavioral Research, 49, 285. https://doi.org/10.1080/00273171.2014.912889
dc.identifier.citedreferenceHambleton, R. K., & Han, N. ( 2005 ). Assessing the t of IRT models to educational and psychological test data: Ave step plan and several graphical displays. In W. R. Lenderking & D. Revicki (Eds.), Advances in health outcomes research methods, measurement, statistical analysis, and clinical applications. Washington, DC: Degnon Associates.
dc.identifier.citedreferenceHambleton, R. K., Swaminathan, H., & Rogers, H. J. ( 1991 ). Fundamentals of item response theory. Newbury Park, CA: Sage.
dc.identifier.citedreferenceHambleton, R. K., & Traub, R. E. ( 1973 ). Analysis of empirical data using two logistic latent trait models. British Journal of Mathematical and Statistical Psychology, 24, 273 – 281. https://doi.org/10.1111/j.2044-8317.1973.tb00517.x
dc.identifier.citedreferenceLiao, W., Ho, R., Yen, Y., & Cheng, H. ( 2012 ). The four‐parameter logistic item response theory model as a robust method of estimating ability despite aberrant responses. Social Behavior and Personality: An International Journal, 40, 1679 – 1694. https://doi.org/10.2224/sbp.2012.40.10.1679
dc.identifier.citedreferenceLinacre, J. M. ( 2004 ). Discrimination, guessing and carelessness: Estimating IRT parameters with Rasch. Rasch Measurement Transactions, 18, 959 – 960. https://www.rasch.org/rmt/rmt181b.htm
dc.identifier.citedreferenceLoken, E., & Rulison, K. L. ( 2010 ). Estimation of a four‐parameter item response theory model. British Journal of Mathematical and Statistical Psychology, 63, 509 – 525. https://doi.org/10.1348/000711009X474502
dc.identifier.citedreferenceLord, F. M. ( 1975 ). Evaluation with artificial data of a procedure for estimating ability and item characteristic curve parameters (Research Memorandum RB‐75‐33). Princeton, NJ: Educational Testing Service.
dc.identifier.citedreferenceMagis, D. ( 2013 ). A note on the item information function of the four‐parameter logistic model. Applied Psychological Measurement, 37, 304 – 315. https://doi.org/10.1177/0146621613475471
dc.identifier.citedreferenceMcKinley, R., & Mills, C. ( 1985 ). A comparison of several goodness‐of‐fit statistics. Applied Psychological Measurement, 9, 49 – 57. https://doi.org/10.1177/014662168500900105
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.