Show simple item record

Radiological Society of North America/Quantitative Imaging Biomarker Alliance Shear Wave Speed Bias Quantification in Elastic and Viscoelastic Phantoms

dc.contributor.authorPalmeri, Mark L.
dc.contributor.authorMilkowski, Andy
dc.contributor.authorBarr, Richard
dc.contributor.authorCarson, Paul
dc.contributor.authorCouade, Mathieu
dc.contributor.authorChen, Jun
dc.contributor.authorChen, Shigao
dc.contributor.authorDhyani, Manish
dc.contributor.authorEhman, Richard
dc.contributor.authorGarra, Brian
dc.contributor.authorGee, Albert
dc.contributor.authorGuenette, Gilles
dc.contributor.authorHah, Zaegyoo
dc.contributor.authorLynch, Ted
dc.contributor.authorMacdonald, Michael
dc.contributor.authorManaguli, Ravi
dc.contributor.authorMiette, Veronique
dc.contributor.authorNightingale, Kathryn R.
dc.contributor.authorObuchowski, Nancy
dc.contributor.authorRouze, Ned C.
dc.contributor.authorMorris, D. Cody
dc.contributor.authorFielding, Shana
dc.contributor.authorDeng, Yufeng
dc.contributor.authorChan, Derek
dc.contributor.authorChoudhury, Kingshuk
dc.contributor.authorYang, Siyun
dc.contributor.authorSamir, Anthony E.
dc.contributor.authorShamdasani, Vijay
dc.contributor.authorUrban, Matthew
dc.contributor.authorWear, Keith
dc.contributor.authorXie, Hua
dc.contributor.authorOzturk, Arinc
dc.contributor.authorQiang, Bo
dc.contributor.authorSong, Pengfei
dc.contributor.authorMcAleavey, Stephen
dc.contributor.authorRosenzweig, Stephen
dc.contributor.authorWang, Michael
dc.contributor.authorOkamura, Yoko
dc.contributor.authorMcLaughlin, Glen
dc.contributor.authorChen, Yuling
dc.contributor.authorNapolitano, David
dc.contributor.authorCarlson, Lindsey
dc.contributor.authorErpelding, Todd
dc.contributor.authorHall, Timothy J.
dc.date.accessioned2021-03-02T21:47:49Z
dc.date.available2022-04-02 16:47:47en
dc.date.available2021-03-02T21:47:49Z
dc.date.issued2021-03
dc.identifier.citationPalmeri, Mark L.; Milkowski, Andy; Barr, Richard; Carson, Paul; Couade, Mathieu; Chen, Jun; Chen, Shigao; Dhyani, Manish; Ehman, Richard; Garra, Brian; Gee, Albert; Guenette, Gilles; Hah, Zaegyoo; Lynch, Ted; Macdonald, Michael; Managuli, Ravi; Miette, Veronique; Nightingale, Kathryn R.; Obuchowski, Nancy; Rouze, Ned C.; Morris, D. Cody; Fielding, Shana; Deng, Yufeng; Chan, Derek; Choudhury, Kingshuk; Yang, Siyun; Samir, Anthony E.; Shamdasani, Vijay; Urban, Matthew; Wear, Keith; Xie, Hua; Ozturk, Arinc; Qiang, Bo; Song, Pengfei; McAleavey, Stephen; Rosenzweig, Stephen; Wang, Michael; Okamura, Yoko; McLaughlin, Glen; Chen, Yuling; Napolitano, David; Carlson, Lindsey; Erpelding, Todd; Hall, Timothy J. (2021). "Radiological Society of North America/Quantitative Imaging Biomarker Alliance Shear Wave Speed Bias Quantification in Elastic and Viscoelastic Phantoms." Journal of Ultrasound in Medicine 40(3): 569-581.
dc.identifier.issn0278-4297
dc.identifier.issn1550-9613
dc.identifier.urihttps://hdl.handle.net/2027.42/166433
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherviscoelasticity
dc.subject.otheracoustic radiation force
dc.subject.otherelasticity
dc.subject.otherphantom
dc.subject.otherQuantitative Imaging Biomarker Alliance
dc.subject.othershear wave
dc.titleRadiological Society of North America/Quantitative Imaging Biomarker Alliance Shear Wave Speed Bias Quantification in Elastic and Viscoelastic Phantoms
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166433/1/jum15609.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166433/2/jum15609_am.pdf
dc.identifier.doi10.1002/jum.15609
dc.identifier.sourceJournal of Ultrasound in Medicine
dc.identifier.citedreferenceArvazyan A, Rmen PS, Udenko O, et al. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol 1998; 24: 1419 – 1435.
dc.identifier.citedreferenceFerraioli G, Filice C, Castera L, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography, part 3: liver. Ultrasound Med Biol 2015; 41: 1161 – 1179.
dc.identifier.citedreferenceOliphant TE, Manduca A, Ehman RL, Greenleaf JF. Complex‐valued stiffness reconstruction for magnetic resonance elastography by algebraic inversion of the differential equation. Magn Reson Med 2001; 45: 299 – 310.
dc.identifier.citedreferenceVirtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 2020; 17: 261 – 272.
dc.identifier.citedreferenceNational Institute for Health and Care Excellence. Hepatitis B (chronic): diagnosis and management. National Institute for Health and Care Excellence website. https://www.nice.org.uk/guidance/cg165. Accessed February 2018.
dc.identifier.citedreferenceDoherty JR, Trahey GE, Nightingale KR, Palmeri ML. Acoustic radiation force elasticity imaging in diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 2013; 60: 685 – 701.
dc.identifier.citedreferenceBarr RG, Ferraioli G, Palmeri ML, et al. Elastography assessment of liver fibrosis: Society of Radiologists in Ultrasound consensus conference statement. Radiology 2015; 276: 845 – 861.
dc.identifier.citedreferenceManduca A, Oliphant TE, Dresner MA, et al. Magnetic resonance elastography: non‐invasive mapping of tissue elasticity. Med Image Anal 2001; 5: 237 – 254.
dc.identifier.citedreferenceSeabold S, Perktold J. Statsmodels: econometric and statistical modeling with Python. SciPy 2010 website; 2010; 1: 92 – 96.
dc.identifier.citedreferenceDeng Y, Rouze NC, Palmeri ML, Nightingale KR. On system‐dependent sources of uncertainty and bias in ultrasonic quantitative shear‐wave imaging. IEEE Trans Ultrason Ferroelectr Freq Control 2016; 63: 381 – 393.
dc.identifier.citedreferenceZhao H, Song P, Urban MW, et al. Bias observed in time‐of‐flight shear wave speed measurements using radiation force of a focused ultrasound beam. Ultrasound Med Biol 2011; 37: 1884 – 1892.
dc.identifier.citedreferenceMorris DC, Rouze NC, Palmeri ML, Nightingale KR. Group shear wave based viscoelastic parameter estimation in SWEI: analysis of sources of bias. Proceedings of the 2017 IEEE International Ultrasonics Symposium. Piscataway, NJ: Institute of Electrical and Electronics Engineers; 2017: 1 ‐ 4.
dc.identifier.citedreferencePalmeri ML, Wang MH, Rouze NC, et al. Noninvasive evaluation of hepatic fibrosis using acoustic radiation force–based shear stiffness in patients with nonalcoholic fatty liver disease. J Hepatol 2011; 55: 666 – 672.
dc.identifier.citedreferenceDeng Y, Rouze NC, Palmeri ML, Nightingale KR. Ultrasonic shear wave elasticity imaging sequencing and data processing using a Verasonics research scanner. IEEE Trans Ultrason Ferroelectr Freq Control 2017; 64: 164 – 176.
dc.identifier.citedreferenceRadiological Society of North America. QIBA profile: ultrasound measurement of shear wave speed for estimation of liver fibrosis. Quantitative Imaging Biomarker Alliance, profile stage: public comment. Radiological Society of North America website. http://qibawiki.rsna.org/index.php/Profiles. Accessed October 2019.
dc.identifier.citedreferenceVenkatesh SK, Yin M, Ehman RL. Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J Magn Reson Imaging 2013; 37: 544 – 555.
dc.identifier.citedreferenceHall TJ, Milkowski A, Garra B, et al. RSNA/QIBA: Shear wave speed as a biomarker for liver fibrosis staging. Proceedings of the 2013 IEEE International Ultrasonics Symposium. Prague, Czechia: Institute of Electrical and Electronics Engineers; 2013:397–400.
dc.identifier.citedreferencePalmeri ML, Deng Y, Rouze NC, Nightingale KR. Dependence of shear wave spectral content on acoustic radiation force excitation duration and spatial beamwidth. Proceedings of the 2014 IEEE International Ultrasonics Symposium. Piscataway, NJ: Institute of Electrical and Electronics Engineers; 2014: 1105 ‐ 1108.
dc.identifier.citedreferenceRouze NC, Deng Y, Trutna CA, Palmeri ML, Nightingale KR. Characterization of viscoelastic materials using group shear wave speeds. IEEE Trans Ultrason Ferroelectr Freq Control 2018; 65: 780 – 794.
dc.identifier.citedreferencePalmeri ML, Qiang B, Chen S, Urban MW. Guidelines for finite‐element modeling of acoustic radiation force–induced shear wave propagation in tissue‐mimicking media. IEEE Trans Ultrason Ferroelectr Freq Control 2017; 64: 78 – 92.
dc.identifier.citedreferenceLong Z, Tradup DJ, Song P, et al. Clinical acceptance testing and scanner comparison of ultrasound shear wave elastography. J Appl Clin Med Phys 2018; 19: 336 – 342.
dc.identifier.citedreferenceNadebaum DP, Sood S, Gibson RN. Variability of liver shear wave measurements using a new ultrasound elastographic technique. J Ultrasound Med 2017; 37: 647 – 656.
dc.identifier.citedreferenceFerraioli G, De Silvestri A, Lissandrin R, et al. Evaluation of inter‐system variability in liver stiffness measurements. Ultraschall Med 2019; 40: 64 – 75.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.