Show simple item record

ICESat‐2 Meltwater Depth Estimates: Application to Surface Melt on Amery Ice Shelf, East Antarctica

dc.contributor.authorFricker, Helen Amanda
dc.contributor.authorArndt, Philipp
dc.contributor.authorBrunt, Kelly M.
dc.contributor.authorDatta, Rajashree Tri
dc.contributor.authorFair, Zachary
dc.contributor.authorJasinski, Michael F.
dc.contributor.authorKingslake, Jonathan
dc.contributor.authorMagruder, Lori A.
dc.contributor.authorMoussavi, Mahsa
dc.contributor.authorPope, Allen
dc.contributor.authorSpergel, Julian J.
dc.contributor.authorStoll, Jeremy D.
dc.contributor.authorWouters, Bert
dc.date.accessioned2021-05-12T17:27:35Z
dc.date.available2022-05-12 13:27:33en
dc.date.available2021-05-12T17:27:35Z
dc.date.issued2021-04-28
dc.identifier.citationFricker, Helen Amanda; Arndt, Philipp; Brunt, Kelly M.; Datta, Rajashree Tri; Fair, Zachary; Jasinski, Michael F.; Kingslake, Jonathan; Magruder, Lori A.; Moussavi, Mahsa; Pope, Allen; Spergel, Julian J.; Stoll, Jeremy D.; Wouters, Bert (2021). "ICESat‐2 Meltwater Depth Estimates: Application to Surface Melt on Amery Ice Shelf, East Antarctica." Geophysical Research Letters 48(8): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/167549
dc.description.abstractSurface melting occurs during summer on the Antarctic and Greenland ice sheets, but the volume of stored surface meltwater has been difficult to quantify due to a lack of accurate depth estimates. NASA’s ICESat‐2 laser altimeter brings a new capability: photons penetrate water and are reflected from both the water and the underlying ice; the difference provides a depth estimate. ICESat‐2 sampled Amery Ice Shelf on January 2, 2019 and showed double returns from surface depressions, indicating meltwater. For four melt features, we compared depth estimates from eight algorithms: six based on ICESat‐2 and two from coincident Landsat‐8 and Sentinel‐2 imagery. All algorithms successfully identified surface water at the same locations. Algorithms based on ICESat‐2 produced the most accurate depths; the image‐based algorithms underestimated depths (by 30%–70%). This implies that ICESat‐2 depths can be used to tune image‐based algorithms, moving us closer to quantifying stored meltwater volumes across Antarctica and Greenland.Plain Language SummarySummer surface melting on Antarctica’s ice shelves is a small component of overall ice sheet mass loss but can be important for individual ice shelves and may increase as the climate warms. However, the volume of meltwater has been difficult to monitor because depth estimates are challenging. NASA’s ICESat‐2 laser altimetry mission brings a new capability to this problem. ICESat‐2 532 nm photons (green light) are able to pass through water and reflect from both the water surface and the underlying ice surface; the difference in elevation provides meltwater depth estimates. In this pilot study, we compared depths from eight algorithms (six ICESat‐2 and two image based) over four Amery Ice Shelf meltwater lakes for an ICESat‐2 pass in early January 2019. The ICESat‐2 algorithms all produced more reliable depth estimates, and the image‐based algorithms underestimated the depths. This implies that ICESat‐2 water depths can be used to tune image‐based depth retrieval algorithms, enabling improved performance and allowing us to estimate more accurately how much surface melt is stored in melt ponds on the ice sheets each summer.Key PointsICESat‐2 photons penetrate surface melt lakes and reflect from both the water surface and the underlying ice, providing depth estimatesWe compared depths from eight algorithms (six ICESat‐2 and two image‐based) for four lakes present on Amery Ice Shelf in January 2019Depths from ICESat‐2 were more accurate than from imagery (30%–70% too low); merging these data will improve estimates ice‐sheet wide
dc.publisherNASA Goddard Space Flight Center
dc.publisherWiley Periodicals, Inc.
dc.subject.otherAntarctica
dc.subject.otherice shelves
dc.subject.otherICESat‐2
dc.subject.othersurface melt
dc.subject.otherGreenland
dc.titleICESat‐2 Meltwater Depth Estimates: Application to Surface Melt on Amery Ice Shelf, East Antarctica
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167549/1/grl61701_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167549/2/grl61701.pdf
dc.identifier.doi10.1029/2020GL090550
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceRignot, E., Jacobs, S., Mouginot, J., & Scheuchl, B. ( 2013 ). Ice‐shelf melting around Antarctica. Science, 341 ( 6143 ), 266 – 270.
dc.identifier.citedreferenceJasinski, M., Stoll, J., Hancock, D., Robbins, J., Nattala, J., Pavelsky, T., et al. ( 2019 ). Algorithm theoretical basis document (ATBD) for Inland water data products, ATL13, version 2 ( 99 pp.). Greenbelt, MD: NASA Goddard Space Flight Center. Release Date October 1, 2019. https://doi.org/10.5067/3H94RJ271O0C
dc.identifier.citedreferenceKingslake, J., Ely, J. C., Das, I., & Bell, R. E. ( 2017 ). Widespread movement of meltwater onto and across Antarctic ice shelves. Nature, 544 ( 7650 ), 349 – 352.
dc.identifier.citedreferenceLai, C., Kingslake, J., Wearing, M. G., Chen, P.‐H. C., Gentine, P. H. L., Spergel, J. J., & van Wessem, J. M. ( 2020 ). Vulnerability of Antarctica’s ice shelves to meltwater‐driven fracture. Nature, 584, 574 – 578. https://doi.org/10.1038/s41586-020-2627-8
dc.identifier.citedreferenceLythe, M. B., & Vaughan, D. G. ( 2001 ). Bedmap: A new ice thickness and subglacial topographic model of Antarctica. Journal of Geophysical Research, 106 ( B6 ), 11335 – 11351.
dc.identifier.citedreferenceMagruder, L., Brunt, K. M., Neumann, T., Klotz, B., & Alonzo, M. ( 2019 ). Passive ground‐based optical techniques for monitoring the on‐orbit ICESat‐2 1 altimeter geolocation and footprint diameter. Earth and Space Science (in review).
dc.identifier.citedreferenceMagruder, M., Fricker, H. A., Farrell, S. L., Brunt, K. M., Gardner, A., Hancock, D., et al. ( 2019 ). New Earth orbiter provides a sharper look at a changing planet. Eos, 100. https://doi.org/10.1029/2019EO133233
dc.identifier.citedreferenceMartino, A. J., Neumann, T. A., Kurtz, N. T., & McLennan, D. ( 2019 ). ICESat‐2 mission overview and early performance. In Sensors, systems, and next‐generation satellites XXIII (Vol. 11151, Strasbourg, France: pp. 111510C ). International Society for Optics and Photonics.
dc.identifier.citedreferenceMellor, M., & McKinnon, G. ( 1960 ). The Amery Ice Shelf and its hinterland. Polar Record, 10 ( 64 ), 30 – 34.
dc.identifier.citedreferenceMoussavi, M., Pope, A., Halberstadt, A. R. W., Trusel, L. D., Cioffi, L., & Abdalati, W. ( 2020 ). Antarctic supraglacial lake detection using Landsat 8 and Sentinel‐2 imagery: Toward continental generation of lake volumes. Remote Sensing, 12 ( 1 ), 134.
dc.identifier.citedreferenceNeuenschwander, A. L., & Pitts, K. ( 2019 ). The ATL08 land and vegetation product for the ICESat‐2 mission. Remote Sensing of the Environment, 221, 247 – 259. https://doi.org/10.1016/j.rse.2018.11.005
dc.identifier.citedreferenceNeumann, T. A., Brenner, A., Hancock, D., Robbins, J., Saba, J., Harbeck, K., et al. ( 2020 ). ATLAS/ICESat‐2 L2A global geolocated photon data, version 3. Granule: ATL03_20190102184312_00810210_003_01.h5. Boulder, CO: NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/ATLAS/ATL03.003
dc.identifier.citedreferenceNeumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner, A. C., et al. ( 2019 ). The ice, cloud, and land elevation satellite–2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System. Remote Sensing of Environment, 233, 111325.
dc.identifier.citedreferencePaolo, F. S., Fricker, H. A., & Padman, L. ( 2015 ). Volume loss from Antarctic ice shelves is accelerating. Science, 348 ( 6232 ), 327 – 331.
dc.identifier.citedreferenceParrish, C., Magruder, L. A., Neuenschwander, A., Forfinski‐Sarkozi, N., Alonzo, M., & Jasinski, M. ( 2019 ). Validation of ICESat‐2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance. Remote Sensing, 11 ( 14 ), 111352. https://doi.org/10.3390/rs11141634
dc.identifier.citedreferencePhillips, H. A. ( 1998 ). Surface meltstreams on the Amery Ice Shelf, East Antarctica. Annals of Glaciology, 27, 177 – 181.
dc.identifier.citedreferencePope, A. ( 2016 ). Reproducibly estimating and evaluating supraglacial lake depth with Landsat 8 and other multispectral sensors. Earth and Space Science, 3, 176 – 188. https://doi.org/10.1002/2015EA000125
dc.identifier.citedreferencePope, A., Scambos, T., Moussavi, M., Tedesco, M., Willis, M., Shean, D., & Grigsby, S. ( 2016 ). Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods. The Cryosphere, 10 ( 1 ), 15 – 27. https://doi.org/10.5194/tc-10-15-2016
dc.identifier.citedreferenceRott, H., Skvarca, P., & Nagler, T. ( 1996 ). Rapid collapse of northern Larsen ice shelf, Antarctica. Science, 271 ( 5250 ), 788 – 792.
dc.identifier.citedreferenceScambos, T., Hulbe, C., & Fahnestock, M. ( 2003 ). Climate‐induced ice shelf disintegration in the Antarctic Peninsula. Antarctic Peninsula climate variability: Historical and paleoenvironmental perspectives. Antarctic Research Series, 79, 79 – 92.
dc.identifier.citedreferenceShepherd, A., Wingham, D., Payne, T., & Skvarca, P. ( 2003 ). Larsen ice shelf has progressively thinned. Science, 302 ( 5646 ), 856 – 859.
dc.identifier.citedreferenceSmith, B., Fricker, H. A., Holschuh, N., Gardner, A. S., Adusumilli, S., Brunt, K. M., et al. ( 2019 ). Land ice height‐retrieval algorithms for NASA’s ICESat‐2 photon‐counting laser altimeter. Remote Sensing of the Environment, 233 ( 111352 ). https://doi.org/10.1016/j.rse.2019.111352
dc.identifier.citedreferenceSneed, W. A., & Hamilton, G. S. ( 2011 ). Validation of a method for determining the depth of glacial melt ponds using satellite imagery. Annals of Glaciology, 52 ( 15–22 ). https://doi.org/10.3189/172756411799096240
dc.identifier.citedreferenceSpergel, J., Kingslake, J., Creyts, T., van Wessem, M., & Fricker, H. A. ( 2021 ). Surface meltwater drainage and ponding on the Amery Ice Shelf, East Antarctica, 1973–2019. Journal of Glaciology. https://doi.org/10.1017/jog.2021.46
dc.identifier.citedreferenceStokes, C. R., Sanderson, J. E., Miles, B. W., Jamieson, S. S., & Leeson, A. A. ( 2019 ). Widespread distribution of supraglacial lakes around the margin of the East Antarctic ice sheet. Scientific Reports, 9 ( 1 ), 1 – 14.
dc.identifier.citedreferenceTedesco, M. ( 2007 ). Snowmelt detection over the Greenland ice sheet from SSM/I brightness temperature daily variations. Geophysical Research Letters, 34, L02504. https://doi.org/10.1029/2006GL028466
dc.identifier.citedreferenceTedesco, M., & Steiner, N. ( 2011 ). In‐situ multispectral and bathymetric measurements over a supraglacial lake in western Greenland using a remotely controlled watercraft. The Cryosphere, 5, 445 – 452. https://doi.org/10.5194/tc-5-445-2011
dc.identifier.citedreferenceTinto, K. J., Padman, L., Siddoway, C. S., Springer, S. R., Fricker, H. A., Das, I., et al. ( 2019 ). Ross Ice Shelf response to climate driven by the tectonic imprint on seafloor bathymetry. Nature Geoscience, 12 ( 6 ), 441 – 449.
dc.identifier.citedreferenceTrusel, L. D., Frey, K. E., Das, S. B., Karnauskas, K. B., Munneke, P. K., Van Meijgaard, E., et al. ( 2015 ). Divergent trajectories of Antarctic surface melt under two twenty‐first‐century climate scenarios. Nature Geoscience, 6 ( 12 ), 927 – 932.
dc.identifier.citedreferencevan den Broeke, M. ( 2005 ). Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophysical Research Letters, 32, L12815. https://doi.org/10.1029/2005GL023247
dc.identifier.citedreferenceWilliamson, A. G., Banwell, A. F., Willis, I. C., & Arnold, N. S. ( 2018 ). Dual‐satellite (Sentinel‐2 and Landsat 8) remote sensing of supraglacial lakes in Greenland. The Cryosphere, 12, 3045 – 3065.
dc.identifier.citedreferenceZwally, H. J., & Fiegles, S. ( 1994 ). Extent and duration of Antarctic surface melting. Journal of Glaciology, 40 ( 136 ), 463 – 475.
dc.identifier.citedreferenceCampello, R. J., Moulavi, D., & Sander, J. ( 2013 ). Density‐based clustering based on hierarchical density estimates. In Pacific‐Asia conference on knowledge discovery and data mining (pp. 160 – 172 ). Berlin/Heidelberg, Germany: Springer.
dc.identifier.citedreferenceAdusumilli, S., Fricker, H. A., Medley, B., Padman, L., & Siegfried, M. R. ( 2020 ). Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nature Geoscience, 13, 616 – 620. https://doi.org/10.1038/s41561-020-0616-z
dc.identifier.citedreferenceBell, R. E., Banwell, A. F., Trusel, L. D., & Kingslake, J. ( 2018 ). Antarctic surface hydrology and impacts on ice‐sheet mass balance. Nature Climate Change, 8, 1044 – 1052. https://doi.org/10.1038/s41558-018-0326-3
dc.identifier.citedreferenceBrunt, K. M., Neumann, T. A., & Smith, B. E. ( 2019 ). Assessment of ICESat‐2 ice‐sheet surface heights, based on comparisons over the interior of the Antarctic ice sheet. Geophysical Research Letters, 46, 13072 – 13078. https://doi.org/10.1029/2019GL084886
dc.identifier.citedreferenceCook, A. J., & Vaughan, D. G. ( 2010 ). Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. The Cryosphere, 4 ( 1 ), 77 – 98.
dc.identifier.citedreferenceDatta, R. T., & Wouters, B. ( 2021 ). Supraglacial lake bathymetry automatically derived from ICESat‐2 constraining lake depth estimates from multi‐source satellite imagery. The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-4
dc.identifier.citedreferenceFair, Z., Flanner, M., Brunt, K. M., Fricker, H. A., & Gardner, A. S. ( 2020 ). Using ICESat‐2 and Operation IceBridge altimetry for supraglacial lake depth retrievals. The Cryosphere Discussions, 14, 4253 – 4263. https://doi.org/10.5194/tc-2020-136
dc.identifier.citedreferenceFricker, H. A., & Padman, L. ( 2012 ). Thirty years of elevation change on Antarctic Peninsula ice shelves from multimission satellite radar altimetry. Journal of Geophysical Research, 117, C02026. https://doi.org/10.1029/2011JC007126
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.