Show simple item record

Using gradient Forest to predict climate response and adaptation in Cork oak

dc.contributor.authorVanhove, Mathieu
dc.contributor.authorPina‐martins, Francisco
dc.contributor.authorCoelho, Ana Cristina
dc.contributor.authorBranquinho, Cristina
dc.contributor.authorCosta, Augusta
dc.contributor.authorBatista, Dora
dc.contributor.authorPríncipe, Adriana
dc.contributor.authorSousa, Paulo
dc.contributor.authorHenriques, André
dc.contributor.authorMarques, Isabel
dc.contributor.authorBelkadi, Bouchra
dc.contributor.authorKnowles, L. Lacey
dc.contributor.authorPaulo, Octávio S.
dc.date.accessioned2021-07-01T20:10:01Z
dc.date.available2022-07-01 16:10:01en
dc.date.available2021-07-01T20:10:01Z
dc.date.issued2021-06
dc.identifier.citationVanhove, Mathieu; Pina‐martins, Francisco ; Coelho, Ana Cristina; Branquinho, Cristina; Costa, Augusta; Batista, Dora; Príncipe, Adriana ; Sousa, Paulo; Henriques, André ; Marques, Isabel; Belkadi, Bouchra; Knowles, L. Lacey; Paulo, Octávio S. (2021). "Using gradient Forest to predict climate response and adaptation in Cork oak." Journal of Evolutionary Biology (6): 910-923.
dc.identifier.issn1010-061X
dc.identifier.issn1420-9101
dc.identifier.urihttps://hdl.handle.net/2027.42/168244
dc.description.abstractClimate change is impacting locally adapted species such as the keystone tree species cork oak (Quercus suber L.). Quantifying the importance of environmental variables in explaining the species distribution can help build resilient populations in restoration projects and design forest management strategies. Using landscape genomics, we investigated the population structure and ecological adaptation of this tree species across the Mediterranean Basin. We applied genotyping by sequencing and derived 2,583 single nucleotide polymorphism markers genotyped from 81 individuals across 17 sites in the studied region. We implemented an approach based on the nearest neighbour haplotype - coancestry- and uncovered a weak population structure along an east- west climatic gradient across the Mediterranean region. We identified genomic regions potentially involved in local adaptation and predicted differences in the genetic composition across the landscape under current and future climates. Variants associated with temperature and precipitation variables were detected, and we applied a nonlinear multivariate association method, gradient forest, to project these gene- environment relationships across space. The model allowed the identification of geographic areas within the western Mediterranean region most sensitive to climate change: south- western Iberia and northern Morocco. Our findings provide a preliminary assessment towards a potential management strategy for the conservation of cork oak in the Mediterranean Basin.Gradient Forest applied to SNPs variation associated with climate variables and projected across space allows the identification of geographic areas within the Mediterranean basin most sensitive to climate change for Cork Oak, the larger - genetic offset- in 2070 is predicted to occur in Southwest Portugal, Baetic region and Northern Morocco.
dc.publisherWashington
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlandscape genomics
dc.subject.otherlocal adaptation
dc.subject.otherQuercus suber L
dc.subject.otherclimate change
dc.subject.otherGradient Forest
dc.titleUsing gradient Forest to predict climate response and adaptation in Cork oak
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168244/1/jeb13765_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168244/2/jeb13765.pdf
dc.identifier.doi10.1111/jeb.13765
dc.identifier.sourceJournal of Evolutionary Biology
dc.identifier.citedreferenceMalinsky, M., Trucchi, E., Lawson, D. J., & Falush, D. ( 2018 ). RADpainter and fineRADstructure: Population Inference from RADseq Data. Molecular Biology and Evolution, 35, 1284 - 1290.
dc.identifier.citedreferenceLawson, D. J., Hellenthal, G., Myers, S., & Falush, D. ( 2012 ). Inference of population structure using dense haplotype data. PLoS Genetics, 8, e1002453.
dc.identifier.citedreferenceLindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia- Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., Lexer, M. J., & Marchetti, M. ( 2010 ). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259, 698 - 709.
dc.identifier.citedreferenceLosa Quintana, J. M. ( 1978 ). Estudio mineralogico y estructural de un fosil vegetal de Galicia. Anales Del Instituto Botanico A.J. Cavanilles, 35, 235 - 243.
dc.identifier.citedreferenceLotterhos, K. E., & Whitlock, M. C. ( 2014 ). Evaluation of demographic history and neutral parameterization on the performance of F ST outlier tests. Molecular Ecology, 23, 2178 - 2192.
dc.identifier.citedreferenceLotterhos, K. E., & Whitlock, M. C. ( 2015 ). The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Molecular Ecology, 24, 1031 - 1046.
dc.identifier.citedreferenceLumaret, R., Tryphon- Dionnet, M., Michaud, H., Sanuy, A., Ipotesi, E., Born, C., Mir, C. ( 2005 ). Phylogeographical variation of chloroplast DNA in cork oak (Quercus suber). Annals of Botany, 96, 853 - 861.
dc.identifier.citedreferenceMagri, D., Fineschi, S., Bellarosa, R., Buonamici, A., Sebastiani, F., Schirone, B., Simeone, M. C., & Vendramin, G. G. ( 2007 ). The distribution of Quercus suber chloroplast haplotypes matches the palaeogeographical history of the western Mediterranean. Molecular Ecology, 16, 5259 - 5266.
dc.identifier.citedreferenceFrichot, E., & François, O. ( 2015 ). LEA: An R package for landscape and ecological association studies. Methods in Ecology and Evolution, 6, 925 - 929.
dc.identifier.citedreferenceMantel, N. ( 1967 ). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209 - 220.
dc.identifier.citedreferenceMartins, K., Gugger, P. F., Llanderal- Mendoza, J., González- Rodríguez, A., Fitz- Gibbon, S. T., Zhao, J. L., Rodríguez- Correa, H., Oyama, K., & Sork, V. L. ( 2018 ). Landscape genomics provides evidence of climate- associated genetic variation in Mexican populations of Quercus rugosa. Evolutionary Applications, 11, 1842 - 1858.
dc.identifier.citedreferenceModesto, I. S., Miguel, C., Pina- Martins, F., Glushkova, M., Veloso, M., Paulo, O. S., Batista, D. ( 2014 ). Identifying signatures of natural selection in cork oak (Quercus suber L.) genes through SNP analysis. Tree Genetics and Genomes, 10, 1645 - 1660.
dc.identifier.citedreferenceNeale, D. B., Martínez- García, P. J., De La Torre, A. R., Montanari, S., & Wei, X.- X. ( 2017 ). Novel insights into tree biology and genome evolution as revealed through genomics. Annual Review of Plant Biology, 68, 457 - 483.
dc.identifier.citedreferenceNobre, A., Empadinhas, N., Nobre, M. F., Lourenço, E. C., Maycock, C., Ventura, M. R., Maycock, C. D. ( 2013 ). The plant Selaginella moellendorffii possesses enzymes for synthesis and hydrolysis of the compatible solutes mannosylglycerate and glucosylglycerate. Planta, 237, 891 - 901.
dc.identifier.citedreferenceOksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O- hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. N., & Wagner, H. H. ( 2013 ). Package - vegan- Community ecology package, version 2.
dc.identifier.citedreferencePetit, R. J., Hampe, A., & Cheddadi, R. ( 2005 ). Climate changes and tree phylogeography in the Mediterranean. Taxon, 54, 877 - 885.
dc.identifier.citedreferencePina- Martins, F., Baptista, J., Pappas, G., & Paulo, O. S. ( 2019 ). New insights into adaptation and population structure of cork oak using genotyping by sequencing. Global Change Biology, 25, 337 - 350.
dc.identifier.citedreferencePríncipe, A., Matos, P., Sarris, D., Gaiola, G., do Rosário, L., & Correia, O. et al ( 2019 ). In Mediterranean drylands microclimate affects more tree seedlings than adult trees. Ecological Indicators, 106, 105476
dc.identifier.citedreferenceProber, S. M., Byrne, M., McLean, E. H., Steane, D. A., Potts, B. M., Vaillancourt, R. E., Stock, W. D. ( 2015 ). Climate- adjusted provenancing: A strategy for climate- resilient ecological restoration. Frontiers in Ecology and Evolution, 3, 65.
dc.identifier.citedreferenceR Core Team ( 2016 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
dc.identifier.citedreferenceRellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M., & Holderegger, R. ( 2015 ). A practical guide to environmental association analysis in landscape genomics. Molecular Ecology, 24, 4348 - 4370.
dc.identifier.citedreferenceRellstab, C., Zoller, S., Walthert, L., Lesur, I., Pluess, A. R., Graf, R. R., Bodénès, C., Sperisen, C., Kremer, A., & Gugerli, F. ( 2016 ). Signatures of local adaptation in candidate genes of oaks (Quercus spp.) in respect to present and future climatic conditions. Molecular Ecology, 25, 5907 - 5924.
dc.identifier.citedreferenceSavolainen, O., Pyhäjärvi, T., & Knürr, T. ( 2007 ). Gene flow and local adaptation in trees. Annual Review of Ecology Evolution and Systematics, 38, 595 - 619.
dc.identifier.citedreferenceSchippers, J. H. M., Nunes- Nesi, A., Apetrei, R., Hille, J., Fernie, A. R., & Dijkwel, P. P. ( 2008 ). The Arabidopsis onset of leaf death5 mutation of quinolinate synthase affects nicotinamide adenine dinucleotide biosynthesis and causes early ageing. The Plant Cell, 20, 2909 - 2925.
dc.identifier.citedreferenceSchoville, S. D., Bonin, A., François, O., Lobreaux, S., Melodelima, C., & Manel, S. ( 2011 ). Adaptive genetic variation on the landscape: Methods and cases. Annual Review of Ecology Evolution and Systematics, 43, 23 - 43.
dc.identifier.citedreferenceShafer, A. B. A., Peart, C. R., Tusso, S., Maayan, I., Brelsford, A., Wheat, C. W., Wolf, J. B. W. ( 2017 ). Bioinformatic processing of RAD- seq data dramatically impacts downstream population genetic inference. Methods in Ecology and Evolution, 8, 907 - 917.
dc.identifier.citedreferenceSork, V. L. ( 2016 ). Gene flow and natural selection shape spatial patterns of genes in tree populations: Implications for evolutionary processes and applications. Evolutionary Applications, 9, 291 - 310.
dc.identifier.citedreferenceSork, V. L., Aitken, S. N., Dyer, R. J., Eckert, A. J., Legendre, P., & Neale, D. B. ( 2013 ). Putting the landscape into the genomics of trees: Approaches for understanding local adaptation and population responses to changing climate. Tree Genetics and Genomes, 9, 901 - 911.
dc.identifier.citedreferenceStorey, J., Bass, A., Dabney, A., & Robinson, D. ( 2015 ). qvalue: Q- Value estimation for false discovery rate control. R package version 2.10.
dc.identifier.citedreferenceStucki, S., Orozco- terWengel, P., Forester, B. R., Duruz, S., Colli, L., Masembe, C., Negrini, R., Landguth, E., Jones, M. R., NEXTGEN Consortium, Bruford, M. W., Taberlet, P., & Joost, S. ( 2017 ). High performance computation of landscape genomic models including local indicators of spatial association. Molecular Ecology Resources. 17, 1072 - 1089. Blackwell Publishing Ltd.
dc.identifier.citedreferenceSupple, M. A., Bragg, J. G., Broadhurst, L. M., Nicotra, A. B., Byrne, M., Andrew, R. L., Widdup, A., Aitken, N. C., & Borevitz, J. O. ( 2018 ). Landscape genomic prediction for restoration of a Eucalyptus foundation species under climate change. Elife, 7, 1 - 22.
dc.identifier.citedreferenceVessella, F., López- Tirado, J., Simeone, M. C., Schirone, B., & Hidalgo, P. J. ( 2017 ). A tree species range in the face of climate change: Cork oak as a study case for the Mediterranean biome. European Journal of Forest Research, 136, 555 - 569.
dc.identifier.citedreferenceVessella, F., Simeone, M. C., & Schirone, B. ( 2015 ). Quercus suber range dynamics by ecological niche modelling: From the Last Interglacial to present time. Quaternary Science Reviews, 119, 85 - 93.
dc.identifier.citedreferenceWilliams, A. V., Nevill, P. G., & Krauss, S. L. ( 2014 ). Next generation restoration genetics: Applications and opportunities. Trends in Plant Science, 19, 529 - 537.
dc.identifier.citedreferenceBreiman, L. ( 2001 ). Random forests. Machine Learning, 45, 5 - 32.
dc.identifier.citedreferenceAitken, S. N., & Bemmels, J. B. ( 2016 ). Time to get moving: Assisted gene flow of forest trees. Evolutionary Applications, 9, 271 - 290.
dc.identifier.citedreferenceAitken, S. N., & Whitlock, M. C. ( 2013 ). Assisted gene flow to facilitate local adaptation to climate change. Annual Review of Ecology Evolution and Systematics, 44, 367 - 388.
dc.identifier.citedreferenceAlberto, F. J., Aitken, S. N., Alía, R., González- Martínez, S. C., Hänninen, H., Kremer, A., Lefèvre, F., Lenormand, T., Yeaman, S., Whetten, R., & Savolainen, O. ( 2013 ). Potential for evolutionary responses to climate change - evidence from tree populations. Global Change Biology, 19, 1645 - 1661.
dc.identifier.citedreferenceAronson, J., Pereira, J. S., & Pausas, J. G. (Eds.) ( 2009 ). Cork oak woodlands on the edge: Ecology, adaptive management, and restoration. Island Press: Washington.
dc.identifier.citedreferenceBalao, F., Lorenzo, M. T., Sánchez- Robles, J. M., Paun, O., García- Castaño, J. L., & Terrab, A. ( 2020 ). Early diversification and permeable species boundaries in the Mediterranean firs. Annals of Botany, 125, 495 - 507.
dc.identifier.citedreferenceBellarosa, R., Simeone, M. C., Papini, A., & Schirone, B. ( 2005 ). Utility of ITS sequence data for phylogenetic reconstruction of Italian Quercus spp. Molecular Phylogenetics and Evolution, 34, 355 - 370.
dc.identifier.citedreferenceBemmels, J. B., Title, P. O., Ortego, J., & Knowles, L. L. ( 2016 ). Tests of species- specific models reveal the importance of drought in postglacial range shifts of a Mediterranean- climate tree: Insights from integrative distributional, demographic and coalescent modelling and ABC model selection. Molecular Ecology, 25, 4889 - 4906.
dc.identifier.citedreferenceBenito, B. M., Lorite, J., Pérez- Pérez, R., Gómez- Aparicio, L., & Peñas, J. ( 2014 ). Forecasting plant range collapse in a mediterranean hotspot: When dispersal uncertainties matter. Diversity and Distributions, 20, 72 - 83.
dc.identifier.citedreferenceBenito Garzón, M., Sánchez de Dios, R., & Sainz Ollero, H. ( 2008 ). Effects of climate change on the distribution of Iberian tree species. Applied Vegetation Science, 11, 169 - 178.
dc.identifier.citedreferenceBenjamini, Y., & Hochberg, Y. ( 1995 ). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57, 289 - 300.
dc.identifier.citedreferenceBernatchez, S., Xuereb, A., Laporte, M., Benestan, L., Steeves, R., Laflamme, M., Bernatchez, L., & Mallet, M. A. ( 2019 ). Seascape genomics of eastern oyster (Crassostrea virginica) along the Atlantic coast of Canada. Evolutionary Applications, 12, 587 - 609.
dc.identifier.citedreferenceBower, A. D., & Aitken, S. N. ( 2008 ). Ecological genetics and seed transfer guidelines for Pinus albicaulis (Pinaceae). American Journal of Botany, 95, 66 - 76.
dc.identifier.citedreferenceBroadhurst, L. M., Lowe, A., Coates, D. J., Cunningham, S. A., McDonald, M., Vesk, P. A., Yates, C. ( 2008 ). Seed supply for broadscale restoration: Maximizing evolutionary potential. Evolutionary Applications, 1, 587 - 597.
dc.identifier.citedreferenceÄ aliÄ , I., Bussotti, F., Martínez- García, P. J., & Neale, D. B. ( 2016 ). Recent landscape genomics studies in forest trees- what can we believe? Tree Genetic Genomes, 12, 1 - 7.
dc.identifier.citedreferenceCarrión, J. S., Parra, I., Navarro, C., & Munuera, M. ( 2000 ). Past distribution and ecology of the cork oak (Quercus suber) in the Iberian Peninsula: A pollen- analytical approach. Diversity and Distributions, 6, 29 - 44.
dc.identifier.citedreferenceCatchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. ( 2013 ). Stacks: An analysis tool set for population genomics. Molecular Ecology, 22, 3124 - 3140.
dc.identifier.citedreferenceConesa, A., & Götz, S. ( 2008 ). Blast2GO: A comprehensive suite for functional analysis in plant genomics. International Journal of Plant Genomics, 1 - 12
dc.identifier.citedreferenceCoop, G., Witonsky, D., Di Rienzo, A., & Pritchard, J. K. ( 2010 ). Using environmental correlations to identify loci underlying local adaptation. Genetics, 185, 1411 - 1423.
dc.identifier.citedreferenceCorreia, R. A., Bugalho, M. N., Franco, A. M. A., & Palmeirim, J. M. ( 2018 ). Contribution of spatially explicit models to climate change adaptation and mitigation plans for a priority forest habitat. Mitigation and Adaptation Strategies for Global Change, 23, 371 - 386.
dc.identifier.citedreferenceCosta, J., Miguel, C., Almeida, H., Oliveira, M. M., Matos, J. A., Simões, F., Veloso, M., Ricardo, P. C., Paulo, O. S., & Batista, D. ( 2011 ). Genetic divergence in Cork Oak based on cpDNA sequence data. BioMed Central Proceedings, 5, P13.
dc.identifier.citedreferenceCox, K., Vanden Broeck, A., Van Calster, H., & Mergeay, J. ( 2011 ). Temperature- related natural selection in a wind- pollinated tree across regional and continental scales. Molecular Ecology, 20, 2724 - 2738.
dc.identifier.citedreferenceDe Carvalho, A. ( 1958 ). Identificaçao de um possivel fossil de sobreiro (Quercus suber L.) proveniente de solos do mioceno lacustre do Alentejo. BoletiÌ n De La Sociedad Broteriana, 32, 75 - 79.
dc.identifier.citedreferenceDe Kort, H., Vandepitte, K., Bruun, H. H., Closset- Kopp, D., Honnay, O., & Mergeay, J. ( 2014 ). Landscape genomics and a common garden trial reveal adaptive differentiation to temperature across Europe in the tree species Alnus glutinosa. Molecular Ecology, 23, 4709 - 4721.
dc.identifier.citedreferenceDe Mita, S., Thuillet, A. C., Gay, L., Ahmadi, N., Manel, S., Ronfort, J., Vigouroux, Y. ( 2013 ). Detecting selection along environmental gradients: Analysis of eight methods and their effectiveness for outbreeding and selfing populations. Molecular Ecology, 22, 1383 - 1399.
dc.identifier.citedreferenceDe Villemereuil, P., Frichot, à ., Bazin, à ., François, O., & Gaggiotti, O. E. ( 2014 ). Genome scan methods against more complex models: When and how much should we trust them? Molecular Ecology, 23, 2006 - 2019.
dc.identifier.citedreferenceDevlin, B., & Roeder, K. ( 1999 ). Genomic control for association studies. Biometrics, 55, 997 - 1004.
dc.identifier.citedreferenceDincÄ , V., Lee, K. M., Vila, R., & Mutanen, M. ( 2019 ). The conundrum of species delimitation: A genomic perspective on a mitogenetically super- variable butterfly. Proceedings of the Royal Society B- Biological Sciences, 286, 20191311.
dc.identifier.citedreferenceDray, S., Legendre, P., & Peres- Neto, P. R. ( 2006 ). Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196, 483 - 493.
dc.identifier.citedreferenceDukes, J. S., Chiariello, N. R., Cleland, E. E., Moore, L. A., Rebecca Shaw, M., Thayer, S., Tobeck, T., Mooney, H. A., & Field, C. B. ( 2005 ). Responses of grassland production to single and multiple global environmental changes. PLoS Biology, 3, e319.
dc.identifier.citedreferenceEllis, N., Smith, S. J., & Pitcher, C. R. ( 2012 ). Gradient forests: Calculating importance gradients on physical predictors. Ecology, 93, 156 - 168.
dc.identifier.citedreferenceElshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., Mitchell, S. E. ( 2011 ). A robust, simple genotyping- by- sequencing (GBS) approach for high diversity species. PLoS One, 6, e19379.
dc.identifier.citedreferenceFerrier, S., Manion, G., Elith, J., & Richardson, K. ( 2007 ). Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions, 13, 252 - 264.
dc.identifier.citedreferenceFick, S. E., & Hijmans, R. J. ( 2017 ). WorldClim 2: New 1- km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302 - 4315.
dc.identifier.citedreferenceFitzpatrick, M. C., & Keller, S. R. ( 2015 ). Ecological genomics meets community- level modelling of biodiversity: Mapping the genomic landscape of current and future environmental adaptation. Ecology Letters, 18, 1 - 16.
dc.identifier.citedreferenceFoll, M., & Gaggiotti, O. ( 2008 ). A genome- scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics, 180, 977 - 993.
dc.identifier.citedreferenceForester, B. R., Jones, M. R., Joost, S., Landguth, E. L., & Lasky, J. R. ( 2016 ). Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Molecular Ecology, 25, 104 - 120.
dc.identifier.citedreferenceFrichot, E., Schoville, S. D., Bouchard, G., & François, O. ( 2013 ). Testing for associations between loci and environmental gradients using latent factor mixed models. Molecular Biology and Evolution, 30, 1687 - 1699.
dc.identifier.citedreferenceGent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z.- L., & Zhang, M. ( 2011 ). The community climate system model version 4. Journal of Climate, 24, 4973 - 4991.
dc.identifier.citedreferenceGoslee, S. C., & Urban, D. L. ( 2007 ). The ecodist package for dissimilarity- based analysis of ecological data. Journal of Statistical Software, 22, 1 - 19.
dc.identifier.citedreferenceGoudet, J. ( 2005 ). HIERFSTAT, a package for R to compute and test hierarchical F- statistics. Molecular Ecology Notes, 5, 184 - 186.
dc.identifier.citedreferenceGower, J. C. ( 1971 ). Statistical methods of comparing different multivariate analyses of the same data. In D. G. Kendall, F. R. Hodson, & P. Tautu (Eds.), Mathematics in the archaeological and historical sciences (pp. 138 - 149 ). Edinburgh: Edinburgh University Press.
dc.identifier.citedreferenceGugger, P. F., Liang, C. T., Sork, V. L., Hodgskiss, P., & Wright, J. W. ( 2018 ). Applying landscape genomic tools to forest management and restoration of Hawaiian koa (Acacia koa) in a changing environment. Evolutionary Applications, 11, 231 - 242.
dc.identifier.citedreferenceHijmans, R. J., Phillips, S., Leathwick, J., Elith, J., & Hijmans, M. R. J. ( 2017 ). Package - dismo- . Circles, 9, 1 - 68.
dc.identifier.citedreferenceHijmans, R. J., & van Etten, J. ( 2016 ). raster: Geographic analysis and modeling with raster data. R package version 2.5- 8.
dc.identifier.citedreferenceHoban, S., Kelley, J. L., Lotterhos, K. E., Antolin, M. F., Bradburd, G., Lowry, D. B., Poss, M. L., Reed, L. K., Storfer, A., & Whitlock, M. C. ( 2016 ). Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. American Naturalist, 188, 379 - 397.
dc.identifier.citedreferenceHughes, A. R., Inouye, B. D., Johnson, M. T. J., Underwood, N., & Vellend, M. ( 2008 ). Ecological consequences of genetic diversity. Ecology Letters, 11, 609 - 623.
dc.identifier.citedreferenceIngvarsson, P. K., & Bernhardsson, C. ( 2020 ). Genome- wide signatures of environmental adaptation in European aspen (Populus tremula) under current and future climate conditions. Evolutionary Applications, 13, 132 - 142.
dc.identifier.citedreferenceJombart, T. ( 2008 ). Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24, 1403 - 1405.
dc.identifier.citedreferenceKremer, A., Potts, B. M., & Delzon, S. ( 2014 ). Genetic divergence in forest trees: Understanding the consequences of climate change. Functional Ecology, 28, 22 - 36.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.