Show simple item record

Highly anisotropic crystal growth and thermoelectric properties of K2Bi8−xSbxSe13K2Bi8−xSbxSe13 solid solutions: Band gap anomaly at low x

dc.contributor.authorKyratsi, Theodoraen_US
dc.contributor.authorDyck, Jeffrey S.en_US
dc.contributor.authorChen, Weien_US
dc.contributor.authorChung, Duck-Youngen_US
dc.contributor.authorUher, Ctiraden_US
dc.contributor.authorParaskevopoulos, Konstantinos M.en_US
dc.contributor.authorKanatzidis, Mercouri G.en_US
dc.date.accessioned2010-05-06T22:16:57Z
dc.date.available2010-05-06T22:16:57Z
dc.date.issued2002-07-15en_US
dc.identifier.citationKyratsi, Theodora; Dyck, Jeffrey S.; Chen, Wei; Chung, Duck-Young; Uher, Ctirad; Paraskevopoulos, Konstantinos M.; Kanatzidis, Mercouri G. (2002). "Highly anisotropic crystal growth and thermoelectric properties of K2Bi8−xSbxSe13K2Bi8−xSbxSe13 solid solutions: Band gap anomaly at low x." Journal of Applied Physics 92(2): 965-975. <http://hdl.handle.net/2027.42/70515>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70515
dc.description.abstractThe thermoelectric properties of solid solutions of the type β-K2Bi8−xSbxSe13β-K2Bi8−xSbxSe13 (0<x<8)(0<x<8) were studied with respect to thermal behavior, band gap variation, and charge transport properties as a function of x. At x values between 0 and 1.5, the energy band gap is observed to decrease (anomalous) before it widens with increasing x values as would be expected. For selected members of the solid solutions, the Bridgman technique was applied to obtain well-grown oriented ingots that were used to measure the thermal conductivity and charge transport properties in different growth directions. The measurements showed a strong anisotropy in thermoelectric properties with the largest anisotropy observed in the electrical conductivity. Lattice thermal conductivities of the selected solid solutions were observed to decrease when the x value increases. Preliminary doping studies on the x=1.6x=1.6 member were carried out and it was shown that it is possible to significantly increase the power factor. © 2002 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent396877 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleHighly anisotropic crystal growth and thermoelectric properties of K2Bi8−xSbxSe13K2Bi8−xSbxSe13 solid solutions: Band gap anomaly at low xen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, Michigan State University, East Lansing, Michigan 48824en_US
dc.contributor.affiliationumDepartment of Physics, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Chemistry, Michigan State University, East Lansing, Michigan 48824en_US
dc.contributor.affiliationumDepartment of Physics, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Chemistry, Michigan State University, East Lansing, Michigan 48824en_US
dc.contributor.affiliationotherDepartment of Physics, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greeceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70515/2/JAPIAU-92-2-965-1.pdf
dc.identifier.doi10.1063/1.1481967en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceZ⋅T=(S2σ/κ)⋅T,Z⋅T=(S2σ/κ)⋅T, where σ is the electrical conductivity, S is the Seebeck coefficient, κ is the thermal conductivity, and T is the temperature.en_US
dc.identifier.citedreferenceN. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (Dover, New York).en_US
dc.identifier.citedreferenceG. A. Slack, in CRC Handbook of Thermoelectrics, edited by D. Rowe (CRC Press, Boca Raton, FL, 1995), pp. 407–440; G. A. Slack, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull, (Academic, New York, 1997), Vol. 34, p. 1.en_US
dc.identifier.citedreferenceM. G. Kanatzidis, Semicond. Semimetals SESEES69, 51 (2000); D.-Y. Chung, L. Iordanidis, K.-S. Choi, and M. G. Kanatzidis, Bull. Korean Chem. Soc. BKCSDE19, 1283 (1998).en_US
dc.identifier.citedreferenceA. Mrotzek, D.-Y. Chung, N. Ghelani, T. Hogan, and M. G. Kanatzidis, Chem.-Eur. J. CEUJED7, 1915 (2001); K.-S. Choi, D.-Y. Chung, A. Mrotzek, P. Brazis, C. Kannewurf, C. Uher, W. Chen, T. Hogan, and M. G. Kanatzidis, Chem. Mater. CMATEX13, 756 (2001); A. Mrotzek, D.-Y. Chung, T. Hogan, and M. G. Kanatzidis, J. Mater. Chem. JMACEP10, 1667 (2000).en_US
dc.identifier.citedreferenceD.-Y. Chung, K.-S. Choi, L. Iordanidis, J. L. Schindler, P. M. Brazis, C. R. Kannewurf, B. Chen, S. Hu, C. Uher, and M. G. Kanatzidis, Chem. Mater. CMATEX9, 3060 (1997).en_US
dc.identifier.citedreferenceP. W. Brazis, M. Rocci-Lane, J. R. Ireland, D.-Y. Chung, M. G. Kanatzidis, and C. R. Kannewurf, Proceedings of the 18th International Conference on Thermoelectrics (IEEE, Baltimore, MD, 1999), p. 619.en_US
dc.identifier.citedreferenceT. Kyratsi, D.-Y. Chung, K.-S. Choi, J. S. Dyck, W. Chen, C. Uher, and M. G. Kanatzidis, Mater. Res. Soc. Symp. Proc. MRSPDH626, Z8.8.1 (2000).en_US
dc.identifier.citedreferenceW. W. Wendlandt and H. G. Hecht, Reflectance Spectroscopy (Interscience Publishers, New York, 1966); G. Kotum, Reflectance and Spectroscopy (Springer, New York, 1969); S. P. Tandon and J. P. Gupta, Phys. Status Solidi PHSSAK38, 363 (1970).en_US
dc.identifier.citedreferenceCERIUS2,CERIUS2, Version 2.35; Molecular Simulations Inc, Cambridge, UK, 1995.en_US
dc.identifier.citedreferenceT. Kyratsi, D.-Y. Chung, and M. G. Kanatzidis, J. Alloys Compds (unpublished).en_US
dc.identifier.citedreferenceJ. Black, E. M. Conwell, L. Seigle, and C. W. Spencer, J. Phys. Chem. Solids JPCSAW2, 240 (1957).en_US
dc.identifier.citedreferenceLandolt–Borstein, Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung (Springer, Berlin, 1983), Vol. 17f, Sb2Se3Sb2Se3 p. 256, Bi2Te3Bi2Te3 p. 272, Bi2−xSbxTe3Bi2−xSbxTe3 p. 279, and references therein.en_US
dc.identifier.citedreferenceM. Evain, U-FIT: A cell parameter refinement program, Institut des Materiaux de Nantes, Nantes, France (1992).en_US
dc.identifier.citedreferenceP. Brazis, J. Ireland, M. Lane, T. Kyratsi, D.-Y. Chung, M. G. Kanatzidis, and C. R. Kannewurf, Mater. Res. Soc. Symp. Proc. MRSPDH626, Z.8.11.1 (2000).en_US
dc.identifier.citedreferenceIn Ref. 6, β-K2Bi8Se13β-K2Bi8Se13 electrical conductivity measured on ingot is ∼30 S/cm, while the electrical conductivity measured on single crystal is ∼250 S/cm. This significant difference is attributed to macroscopic imperfections of the ingot.en_US
dc.identifier.citedreferenceThe thermal conductivity has two contributions, one from carrier (κel),(κel), which is directly proportional to the electrical conductivity by Wiedeman–Franz law, and the other from the lattice (κlat),(κlat), which is related to lattice structure. This assumes that the data do not include radiative loss effects. In this case, a correction for radiative losses has to be made.en_US
dc.identifier.citedreferenceC. Kittel, Introduction to Solid State Physics, 6th Ed. (J. Wiley, New York, 1986), p. 150.en_US
dc.identifier.citedreferenceL. Genzel, Z. Phys. ZEPYAA135, 177 (1953).en_US
dc.identifier.citedreferenceH. J. Goldsmid, in Materials Used in Semiconducting Devices, edited by C. A. Hogarth (J. Wiley, London, 1965), p. 165.en_US
dc.identifier.citedreferenceSeebeck measurements of ingots of K2Bi8Se13K2Bi8Se13-based materials up to 700 K show a straight linear propagation of the thermopower without signs of saturation and reversal; T. Kyratsi and M. G. Kanatzidis (unpublished).en_US
dc.identifier.citedreferenceBand structure calculations suggest that effective mass in the direction perpendicular to the needles is heavier than that along the needle direction; P. Larson, Ph.D dissertation, Michigan State University, 2001.en_US
dc.identifier.citedreferenceV. I. Fistul, Heavily Doped Semiconductors (Plenum, New York, 1969).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.