Show simple item record

Ballistic and quasiballistic tunnel transit time oscillators for the terahertz range: Linear admittance

dc.contributor.authorGribnikov, Z. S.en_US
dc.contributor.authorVagidov, N. Z.en_US
dc.contributor.authorMitin, V. V.en_US
dc.contributor.authorHaddad, George I.en_US
dc.date.accessioned2010-05-06T22:21:35Z
dc.date.available2010-05-06T22:21:35Z
dc.date.issued2003-05-01en_US
dc.identifier.citationGribnikov, Z. S.; Vagidov, N. Z.; Mitin, V. V.; Haddad, G. I. (2003). "Ballistic and quasiballistic tunnel transit time oscillators for the terahertz range: Linear admittance." Journal of Applied Physics 93(9): 5435-5446. <http://hdl.handle.net/2027.42/70564>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70564
dc.description.abstractWe have considered interactions between ballistic (or quasiballistic) electrons accelerated by a dc electric field in an undoped transit space (T space) and a small ultrahigh frequency ac electric field and have calculated the linear admittance of the T space. Electrons in the T space have a conventional, nonparabolic dispersion relation. After consideration of the simplest specific case when the current is limited by the space charge of the emitted electrons, we turned to an actual case when the current is limited by a heterostructural tunnel barrier (B barrier) separating the heavily doped cathode contact and the T space. We assumed that the B barrier is much thinner than the T space and both dc and ac voltages drop mainly across the T space. The emission tunnel current through the B barrier is determined by the electric field E(0)E(0) in the T space at the boundary B barrier/T space. The more substantial is, the tunnel current limitation the higher the electric field E(0)E(0) becomes. We have shown that for a space-charge limited current the change from parabolic dispersion to the nonparabolic branch induces narrowing and closing of the frequency windows of transit-time negative conductance starting with the lowest-frequency windows. These narrowing and closing frequency windows become effective only for very high voltages U across the T space: U≫mVS2/2e,U≫mVS2/2e, where m is the effective mass for the parabolic branch and VSVS is the saturated velocity for the nonparabolic branch. For moderate voltages U, the effects of nonparabolicity are not very substantial. The tunnel current limitation decreases the space-charge effects in the T space and diminishes the role of the detailed electron dispersion relation. As a result, restoration of the frequency windows of transit-time negative conductance and an increase in the value of this negative conductance occur. The implementation of the considered tunnel injection transit time oscillator diode promises to lead to efficient and powerful sources of terahertz range radiation. © 2003 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent229212 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleBallistic and quasiballistic tunnel transit time oscillators for the terahertz range: Linear admittanceen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of ECE, Wayne State University, Detroit, Michigan 48202en_US
dc.contributor.affiliationumDepartment of EECS, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of ECE, Wayne State University, Detroit, Michigan 48202en_US
dc.contributor.affiliationumDepartment of EECS, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70564/2/JAPIAU-93-9-5435-1.pdf
dc.identifier.doi10.1063/1.1565496en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceJ. Nishizawa and Y. Watanabe, Sci. Rep. Res. Inst. Tohoku Univ. A SRTAA610, 91 (1958).en_US
dc.identifier.citedreferenceV. K. Aladinski, Sov. Phys. Semicond. SPSEAX2, 517 (1968).en_US
dc.identifier.citedreferenceJ. Nishizawa, K. Motoya, and Y. Okuno, IEEE Trans. Microwave Theory Tech. IETMAB26, 1029 (1978).en_US
dc.identifier.citedreferenceH. Eisele and G. I. Haddad, IEEE Trans. Microwave Theory Tech. IETMAB46, 739 (1998).en_US
dc.identifier.citedreferenceG. I. Haddad, J. R. East, and H. Eisele (unpublished).en_US
dc.identifier.citedreferenceC. Kidner, H. Eisele, and G. I. Haddad, Electron. Lett. ELLEAK28, 511 (1992).en_US
dc.identifier.citedreferenceH. Eisele and G. I. Haddad, IEEE Trans. Microwave Theory Tech. IETMAB42, 2498 (1994).en_US
dc.identifier.citedreferenceH. Eisele and G. I. Haddad, IEEE Trans. Microwave Theory Tech. IETMAB43, 210 (1995).en_US
dc.identifier.citedreferenceT. Bauer, M. Rosh, M. Claassen, and W. Harth, Electron. Lett. ELLEAK30, 1319 (1994).en_US
dc.identifier.citedreferenceI. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. JAPIAU89, 5815 (2001).en_US
dc.identifier.citedreferenceS. Adachi, J. Appl. Phys. JAPIAU61, 4869 (1987).en_US
dc.identifier.citedreferenceM. V. Fischetti, IEEE Trans. Electron Devices IETDAI38, 634 (1991).en_US
dc.identifier.citedreferenceS. Tiwari and D. J. Frank, Appl. Phys. Lett. APPLAB60, 630 (1992).en_US
dc.identifier.citedreferenceJ. Bude and K. Hess, J. Appl. Phys. JAPIAU72, 3554 (1992).en_US
dc.identifier.citedreferenceW. E. Benham, Philos. Mag. PHMAA411, 457 (1931).en_US
dc.identifier.citedreferenceF. B. Llewellyn and A. E. Bowen, Bell Syst. Tech. J. BSTJAN18, 280 (1939).en_US
dc.identifier.citedreferenceHandbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965).en_US
dc.identifier.citedreferenceJ. Hu, X. C. Xu, J. A. H. Stotz, S. P. Watkins, A. E. Curzon, M. L. W. Thewalt, N. Matine, and C. R. Bolognesi, Appl. Phys. Lett. APPLAB73, 2799 (1998).en_US
dc.identifier.citedreferenceR. H. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A PRLAAZ119, 173 (1928).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.