Show simple item record

Ontogeny of feeding performance and biomechanics in coyotes

dc.contributor.authorLa Croix, Suzanneen_US
dc.contributor.authorZelditch, Miriam Leahen_US
dc.contributor.authorShivik, John A.en_US
dc.contributor.authorLundrigan, Barbara L.en_US
dc.contributor.authorHolekamp, Kay E.en_US
dc.date.accessioned2011-12-05T18:33:13Z
dc.date.available2013-02-01T20:26:17Zen_US
dc.date.issued2011-12en_US
dc.identifier.citationLa Croix, S.; Zelditch, M. L.; Shivik, J. A.; Lundrigan, B. L.; Holekamp, K. E. (2011). "Ontogeny of feeding performance and biomechanics in coyotes." Journal of Zoology 285(4). <http://hdl.handle.net/2027.42/88048>en_US
dc.identifier.issn0952-8369en_US
dc.identifier.issn1469-7998en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/88048
dc.description.abstractDeveloping organisms must reconcile conflicts between demands of survival within the current life‐history stage, with those of maturation, while negotiating the transitions through succeeding stages. In the case of feeding performance, the parts of the feeding apparatus and their biomechanics must maintain functional integrity to meet the feeding needs of a juvenile even as they develop toward their adult form. We concurrently examine the ontogenetic relationships of feeding performance, dentition and feeding biomechanics, relative to key life‐history events, utilizing samples drawn from the same population of known‐age coyotes Canis latrans . The development of feeding performance is asynchronous with development of both feeding biomechanics and skull morphology; feeding performance lags during ontogeny despite surprisingly large early mechanical advantage of the temporalis, due in part, to early relative maturity of mandibular shape. Feeding performance and biomechanics, like skull morphology, mature well after weaning at 6 weeks of age. Late maturation of bite strength and feeding performance is mediated by ongoing and continued growth of the temporalis muscles as measured by maximum zygomatic arch breadth (ZAB). Males and females may resolve developmental conflicts differently, as females trade earlier maturity for smaller maximum ZAB, decreased relative bite strength and diminished feeding performance, compared with males. The asynchrony of feeding performance development seen in coyotes, is also characteristic of a highly specialized carnivore, the spotted hyena, but coyotes have a much less protracted development, being handicapped relative to adults for a much shorter time. This developmental asynchrony between feeding performance and morphology suggests that a certain minimum threshold of physical growth and development, together with the associated development of biomechanics, are required to produce effective mastication. The relationships among biomechanics, life‐history schedules and ontogeny of feeding performance have obvious implications for fitness.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherOntogenyen_US
dc.subject.otherFeeding Performanceen_US
dc.subject.otherBite Strengthen_US
dc.subject.otherDentitionen_US
dc.subject.otherSkull Morphologyen_US
dc.subject.otherCarnivoreen_US
dc.subject.otherGeometric Morphometricsen_US
dc.subject.otherLife Historyen_US
dc.titleOntogeny of feeding performance and biomechanics in coyotesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum Museum of Paleontology, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationother Department of Zoology, Michigan State University, East Lansing, MI, USAen_US
dc.contributor.affiliationother USDA Wildlife Services National Wildlife Research Center and Utah State University, Logan, UT, USAen_US
dc.contributor.affiliationother Michigan State University Museum and Department of Zoology, Michigan State University, East Lansing, MI, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88048/1/jzo847.pdf
dc.identifier.doi10.1111/j.1469-7998.2011.00847.xen_US
dc.identifier.sourceJournal of Zoologyen_US
dc.identifier.citedreferenceAndelt, W.F., Kie, J.G., Knowlton, F.F. & Cardwell, K. ( 1987 ). Variation in coyote diets associated with season and successional changes in vegetation. J. Wildl. Mgmt. 51, 273 – 277.en_US
dc.identifier.citedreferenceArjo, W.M., Pletscher, D.H. & Ream, R.R. ( 2002 ). Dietary overlap between wolves and coyotes in northwestern Montana. J. Mammal. 83, 754 – 766.en_US
dc.identifier.citedreferenceBekoff, M. ( 1977 ). Canis latrans. Mamm. Species 79, 1 – 9.en_US
dc.identifier.citedreferenceBekoff, M. ( 2001 ). Behavioral development in coyotes and eastern coyotes. In Coyotes: biology, behavior, and management: 97 – 126. Bekoff, M. (Ed.). Caldwell: The Blackburn Press.en_US
dc.identifier.citedreferenceBekoff, M. & Gese, E.M. ( 2003 ). Coyote ( Canis latrans ). In Wild mammals of North America: biology, management, and conservation: 467 – 481. Feldhamer, G.A., Thompson, B.C. & Chapman, J.A. (Eds). Baltimore: John Hopkins University Press.en_US
dc.identifier.citedreferenceBekoff, M. & Jamieson, R. ( 1975 ). Physical development in coyotes ( Canis latrans ), with a comparison to other canids. J. Mammal. 56, 685 – 692.en_US
dc.identifier.citedreferenceBiknevicius, A.R. & Van Valkenburgh, B. ( 1996 ). Design for killing: craniodental adaptations of predators. In Carnivore behavior, ecology and evolution: 393 – 428. Gittleman, J.L. (Ed.). Ithaca: Cornell University Press.en_US
dc.identifier.citedreferenceBinder, W.J. ( 1998 ). Functional aspects of tooth and jaw development in large carnivores. PhD dissertation, University of California, Los Angeles.en_US
dc.identifier.citedreferenceBinder, W.J. & Van Valkenburgh, B. ( 2000 ). Development of bite strength and feeding behaviour in juvenile spotted hyenas ( Crocuta crocuta ). J. Zool. (Lond.) 252, 273 – 283.en_US
dc.identifier.citedreferenceBowen, W.D. ( 1978 ). Social organization of the coyote in relation to prey size. PhD dissertation, University of British Columbia, Vancouver.en_US
dc.identifier.citedreferenceChristiansen, P. & Adolfsen, J. ( 2005 ). Bite forces, canine strength and skull allometry in carnivores (Mammalia, Carnivora). J. Zool. (Lond.) 266, 133 – 151.en_US
dc.identifier.citedreferenceClark, F.W. ( 1972 ). Influence of jackrabbit density on coyote population change. J. Wildl. Mgmt. 36, 343 – 356.en_US
dc.identifier.citedreferenceEllis, J.L., Thomason, J.J., Kebreab, E. & France, J. ( 2008 ). Calibration of estimated biting forces in domestic canids: comparison of post-mortem and in vivo measurements. J. Anat. 212, 769 – 780.en_US
dc.identifier.citedreferenceErickson, G.M., Lappin, A.K. & Vliet, K.A. ( 2003 ). The ontogeny of bite‐force performance in American alligator ( Alligator mississippiensis ). J. Zool. (Lond.) 260, 317 – 327.en_US
dc.identifier.citedreferenceFiorello, C.V. & German, R.Z. ( 1997 ). Heterochrony within species: craniofacial growth in giant, standard and dwarf rabbits. Evolution 51, 250 – 261.en_US
dc.identifier.citedreferenceGaillard, J.‐M., Pontier, D., Allaine, D., Loison, A., Herve, J.‐C. & Heizmann, A. ( 1997 ). Variation in growth form and precocity at birth in eutherian mammals. Proc. Roy. Soc. Lond. Ser. B 264, 859 – 868.en_US
dc.identifier.citedreferenceGese, E.M., Ruff, R.L. & Crabtree, R.L. ( 1996 ). Intrinsic and extrinsic factors influencing coyote predation of small animals in Yellowstone National Park. Can. J. Zool. 74, 784 – 797.en_US
dc.identifier.citedreferenceGittleman, J.L. & Van Valkenburgh, B. ( 1997 ). Sexual dimorphism in the canines and skulls of carnivores: effects of size, phylogeny, and behavioural ecology. J. Zool. (Lond.) 242, 97 – 117.en_US
dc.identifier.citedreferenceGreaves, W.S. ( 1983 ). A functional‐analysis of carnassial biting. Biol. J. Linn. Soc. 20, 353 – 363.en_US
dc.identifier.citedreferenceGreaves, W.S. ( 1985 ). The mammalian postorbital bar as a torsion‐resisting helical strut. J. Zool. (Lond.) 207, 125 – 136.en_US
dc.identifier.citedreferenceHawthorne, V.M. ( 1970 ) Movements and food habits of coyotes in the Sagehen Creek Basin and Vicinity. MSc thesis, University of Nevada, Reno.en_US
dc.identifier.citedreferenceHernandez, L., Parmenter, R.R., Dewitt, J.W., Lightfoot, D.C. & Laundre, J.W. ( 2002 ). Coyote diets in the Chihuahuan Desert, more evidence for optimal foraging. J. Arid Environ. 51, 613 – 624.en_US
dc.identifier.citedreferenceHerrel, A. & Gibb, A.C. ( 2006 ). Ontogeny of performance in vertebrates. Physiol. Biochem. Zool. 79, 1 – 6.en_US
dc.identifier.citedreferenceHidalgo‐Mihart, M.G., Cantu‐Salazar, L., Lopez‐Gonzalez, C.A., Martinez‐Meyer, E. & Gonzalez‐Romero, A. ( 2001 ). Coyote ( Canis latrans ) food habits in a tropical deciduous forest of western Mexico. Am. Midl. Nat. 146, 210 – 216.en_US
dc.identifier.citedreferenceHiiemae, K.M. & Crompton, A.W. ( 1985 ). Mastication, food transport, and swallowing. In Functional vertebrate morphology: 262 – 290. Milton Hildebrand, D.M.B., Liem, K.F. & Wake, D.B. (Eds). Cambridge: Harvard University Press.en_US
dc.identifier.citedreferenceHildebrand, M. ( 1984 ). Analysis of vertebrate structure. New York: Wiley.en_US
dc.identifier.citedreferenceHurov, J., Henry‐Ward, W., Phillips, L. & German, R. ( 1988 ). Growth allometry of craniomandibular muscles, tendons, and bones in the laboratory rat ( Rattus norvegicus ): relationships to oromotor maturation and biomechanics of feeding. Am. J. Anat. 182, 381 – 394.en_US
dc.identifier.citedreferenceJohnson, M.K. ( 1978 ). Food habits of coyotes in southcentral Idaho. PhD dissertation, Colorado State University, Fort Collins.en_US
dc.identifier.citedreferenceKoehl, M. ( 1996 ). When does morphology matter? Annu. Rev. Ecol. Syst. 27, 501 – 542.en_US
dc.identifier.citedreferenceLa Croix, S., Holekamp, K.E., Shivik, J.A., Lundrigan, B.L. & Zelditch, M.L. ( 2011 ). Ontogenetic relationships between cranium and mandible in coyotes and hyenas. J. Morphol. 272, 662 – 674.en_US
dc.identifier.citedreferenceLangenbach, G.E.J. ( 2001 ). Mammalian feeding motor patterns. Am. Zool. 41, 1338 – 1351.en_US
dc.identifier.citedreferenceMonteiro, L.R., Lessa, L.G. & Abe, A.S. ( 1999 ). Ontogenetic variation in skull shape of Thrichomys apereoides (Rodentia: Echimyidae). J. Mammal. 80, 102 – 111.en_US
dc.identifier.citedreferenceRadinsky, L.B. ( 1981 ). Evolution of skull shape in carnivores 1. Representative modern carnivores. Biol. J. Linn. Soc. 15, 369 – 388.en_US
dc.identifier.citedreferenceSchumacher, G.H. ( 1985 ). Comparative functional‐anatomy of jaw muscles in reptiles and mammals. Fortsch. Der Zool. 30, 203 – 212.en_US
dc.identifier.citedreferenceSheets, D.H. ( 2003 ). IMP – integrated morphometrics package. Buffalo: Department of Physics, Canisius College.en_US
dc.identifier.citedreferenceSimpson, C.D. ( 1978 ). Comparative mammalian mastication. Angle Orthodont. 48, 93 – 105.en_US
dc.identifier.citedreferenceSmith, K.K. ( 1993 ). The form of the feeding apparatus in terrestrial vertebrates: studies of adaptation and constraint. In The skull: 150 – 185. Hanken, J. & Hall, B.K. (Eds). Chicago: University of Chicago Press.en_US
dc.identifier.citedreferenceTanner, J.B. ( 2007 ). Behavioral and morphological development in a female‐dominated species, the spotted hyena ( Crocuta croctuta ). PhD dissertation. Michigan State University, East Lansing.en_US
dc.identifier.citedreferenceTanner, J.B., Zelditch, M.L., Lundrigan, B.L. & Holekamp, K.E. ( 2010 ). Ontogenetic change in skull morphology and mechanical advantage in the spotted hyena ( Crocuta crocuta ). J. Morphol. 271, 353 – 365.en_US
dc.identifier.citedreferenceThomason, J.J. ( 1991 ). Cranial strength in relation to estimated biting forces in some mammals. Can. J. Zool. – Rev. Can. Zool. 69, 2326 – 2333.en_US
dc.identifier.citedreferenceThompson, E.N., Biknevicius, A.R. & German, R.Z. ( 2003 ). Ontogeny of feeding function in the gray short‐tailed opossum Monodelphis domestica: empirical support for the constrained model of jaw biomechanics. J. Exp. Biol. 206, 923 – 932.en_US
dc.identifier.citedreferenceTurnbull, W.D. ( 1970 ). Mammalian masticatory apparatus. Fieldiana Geol. 18, 147 – 356.en_US
dc.identifier.citedreferenceVan Valkenburgh, B. ( 1989 ). Carnivore dental adaptations and diet: a study of trophic diversity within guilds. In Carnivore behavior, ecology, and evolution: 410 – 436. Gittleman, J.L. (Ed.). Ithaca: Cornell University Press.en_US
dc.identifier.citedreferenceWainwright, P.C. & Reilly, S.M. ( 1994 ). Ecological morphology. Chicago: University of Chicago Press.en_US
dc.identifier.citedreferenceWatts, H.E., Tanner, J.B., Lundrigan, B.L. & Holekamp, K.E. ( 2009 ). Post‐weaning maternal effects and the evolution of female dominance in the spotted hyena. Proc. Roy. Soc. Lond. Ser. B 276, 2291 – 2298.en_US
dc.identifier.citedreferenceWeijs, W.A. ( 1994 ). Evolutionary approach of masticatory motor patterns in mammals. Adv. Comp. Environ. Physiol. 18, 281 – 320.en_US
dc.identifier.citedreferenceZelditch, M.L., Lundrigan, B.L., Sheets, H.D. & Garland, J.T. ( 2003 ). Do precocial mammals develop at a faster rate? A comparison of rates of skull development in Sigmodon fulviventer and Mus musculus domesticus. J. Evol. Biol. 16, 708 – 720.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.