Search Constraints
Filtering by:
Creator
BIRDS Lab U. Michigan
Remove constraint Creator: BIRDS Lab U. Michigan
1 - 2 of 2
Number of results to display per page
View results as:
Search Results
-
- Creator:
- BIRDS Lab U. Michigan
- Description:
- This dataset contains the videos used for https://doi.org/10.7302/m05a-0d90 (the "raw" motion tracking dataset), and is intended to be unpacked into the same directory tree. The data were produced for ARO W911NF-14-1-0573 "Morphologically Modulated Dynamics" and ARO MURI W911NF-17-1-0306 "From Data-Driven Operator Theoretic Schemes to Prediction, Inference, and Control of Systems" to explore the trade-offs between various oscillator coupling models in modeling multilegged locomotion. The data were also used extensively in examining multi-contact slipping, in the studying the influence of number of legs on otherwise identical locomotion patterns, and in the use of geometric mechanics models for multilegged locomotion. Folder and file names encode the meta-data, with names following an informative naming convention documented in the README.
- Keyword:
- phase, multilegged, robot, and locomotion
- Citation to related publication:
- BIRDS Lab U. Michigan. BIRDS Lab Multipod robot motion tracking data - RAW dataset [Data set], University of Michigan - Deep Blue Data. https://doi.org/10.7302/m05a-0d90, Zhao, D. Ph.D. Thesis "Locomotion of low-DOF multi-legged robots" University of Michigan 2021 https://deepblue.lib.umich.edu/handle/2027.42/169985, and Zhao, D. & Revzen, S. Multi-legged steering and slipping with low DoF hexapod robots Bioinspiration & biomimetics, 2020, 15, 045001 https://doi.org/10.1088/1748-3190/ab84c0
- Discipline:
- Science and Engineering
-
- Creator:
- BIRDS Lab U. Michigan
- Description:
- These data were produced for ARO W911NF-14-1-0573 "Morphologically Modulated Dynamics" and ARO MURI W911NF-17-1-0306 "From Data-Driven Operator Theoretic Schemes to Prediction, Inference, and Control of Systems" to explore the trade-offs between various oscillator coupling models in modeling multilegged locomotion. The data were also used extensively in examining multi-contact slipping, in the studying the influence of number of legs on otherwise identical locomotion patterns, and in the use of geometric mechanics models for multilegged locomotion. Folder and file names encode the meta-data, with names following an informative naming convention documented in the README.
- Keyword:
- phase, multilegged, robot, and locomotion
- Citation to related publication:
- Zhao, D. & Revzen, S. Multi-legged steering and slipping with low DoF hexapod robots Bioinspiration & biomimetics, 2020, 15, 045001 https://doi.org/10.1088/1748-3190/ab84c0 and Zhao, D. Ph.D. Thesis "Locomotion of low-DOF multi-legged robots" University of Michigan 2021 https://deepblue.lib.umich.edu/handle/2027.42/169985
- Discipline:
- Science and Engineering