The matlab code, digital elevation data, and landslide volume data here support the findings of Medwedeff et al. (2024) in JGR: Earth Surface. In this article, we study past landslides to understand how the strength of rocks and soil vary across the landscape and below the ground. We develop a matlab-based model that uses the length, width, slope angle, and thickness of landslides that have occurred in the past to estimate how strong the rock or soil was before it gave way. We improve upon previous studies by using elevation data from before and after landslides occurred to measure how thick the sliding mass was for each landslide. The thickness measurements help us understand how the strength of the ground changes as a function of depth below the surface, like for example, when rocks get weaker near the surface due to increased weathering. We apply our model to landslides that occurred during earthquakes in Greece and Nepal, and we compare the results to rock strength field data. In addition to our model code, we include in this data repository the landslide volume and elevation data for Nepal and Greece that we used to run our model for this study.
Medwedeff, W.G., Clark, M.K., Zekkos, D. (in review 2024) Regional Back-Analysis of Earthquake Triggered Landslide Inventories: a 2D Method for Estimating Rock Strength from Remote Sensing Data. In review in JGR Earth Surface.