This research was completed to statistically validate that a data-model refinement technique could integrate real measurements to remove bias from physics-based models via changing the forcing parameters such as the thermal conductivity coefficients.
Ponder, B. M., Ridley, A. J., Goel, A., & Bernstein, D. S. (2023). Improving forecasting ability of GITM using data-driven model refinement. Space Weather, 21, e2022SW003290. https://doi.org/10.1029/2022SW003290