Search Constraints
Filtering by:
Language
English
Remove constraint Language: English
Language
Python
Remove constraint Language: Python
Number of results to display per page
View results as:
Search Results
-
- Creator:
- Liemohn, Michael W, Adam, Joshua G, and Ganushkina, Natalia Y
- Description:
- Many statistical tools have been developed to aid in the assessment of a numerical model’s quality at reproducing observations. Some of these techniques focus on the identification of events within the data set, times when the observed value is beyond some threshold value that defines it as a value of keen interest. An example of this is whether it will rain, in which events are defined as any precipitation above some defined amount. A method called the sliding threshold of observation for numeric evaluation (STONE) curve sweeps the event definition threshold of both the model output and the observations, resulting in the identification of threshold intervals for which the model does well at sorting the observations into events and nonevents. An excellent data-model comparison will have a smooth STONE curve, but the STONE curve can have wiggles and ripples in it. These features reveal clusters when the model systematically overestimates or underestimates the observations. This study establishes the connection between features in the STONE curve and attributes of the data-model relationship. The method is applied to a space weather example.
- Keyword:
- space physics, statistical methods, and STONE curve
- Citation to related publication:
- Liemohn, M. W., Adam, J. G., & Ganushkina, N. Y. (2022). Analysis of features in a sliding threshold of observation for numeric evaluation (STONE) curve. Space Weather, 20, e2022SW003102. https://doi.org/10.1029/2022SW003102
- Discipline:
- Science
-
- Creator:
- Brenner, Austin, M
- Description:
- Coupling between the solar wind and magnetosphere can be expressed in terms of energy transfer through the separating boundary known as the magnetopause. Geospace simulation is performed using the Space Weather Modeling Framework (SWMF) of a multi-ICME impact event on February 18-20, 2014 in order to study the energy transfer through the magnetopause during storm conditions. The magnetopause boundary is identified using a modified plasma $\beta$ and fully closed field line criteria to a downstream distance of $-20R_{e}$. Observations from Geotail, Themis, and Cluster are used as well as the Shue 1998 model to verify the simulation field data results and magnetopause boundary location. Once the boundary is identified, energy transfer is calculated in terms of total energy flux \textbf{K}, Poynting flux \textbf{S}, and hydrodynamic flux \textbf{H}. Surface motion effects are considered and the regional distribution of energy transfer on the magnetopause surface is explored in terms of dayside $\left(X>0\right)$, flank $\left(X<0\right)$, and tail cross section $\left(X=X_{min}\right)$ regions. It is found that total integrated energy flux over the boundary is nearly balanced between injection and escape, and flank contributions dominate the Poynting flux injection. Poynting flux dominates net energy input, while hydrodynamic flux dominates energy output. Surface fluctuations contribute significantly to net energy transfer and comparison with the Shue model reveals varying levels of cylindrical asymmetry in the magnetopause flank throughout the event. Finally existing energy coupling proxies such as the Akasofu $\epsilon$ parameter and Newell coupling function are compared with the energy transfer results.
- Keyword:
- Space plasma, Magnetosphere, MHD simulations, Magnetopause, Substorm, Energy transfer, and Poynting flux
- Citation to related publication:
- Brenner A, Pulkkinen TI, Al Shidi Q and Toth G (2021) Stormtime Energetics: Energy Transport Across the Magnetopause in a Global MHD Simulation. Front. Astron. Space Sci. 8:756732. doi: 10.3389/fspas.2021.756732
- Discipline:
- Science
-
- Creator:
- Zhang, Yizhen
- Description:
- We collected hours of functional magnetic resonance imaging data from human subjects listening to natural stories. We developed a predictive model of the voxel-wise response and further applied it to thousands of new words to understand how the brain stores and connects different concepts. and This is a dataset for the paper: Zhang, Y., Han, K., Worth, R., & Liu, Z. (2020). Connecting concepts in the brain by mapping cortical representations of semantic relations. Nature communications, 11(1), 1-13. https://doi.org/10.1038/s41467-020-15804-w. This project is also documented at https://osf.io/eq2ba/.
- Keyword:
- fMRI, natural story comprehension, neural encoding, semantic processing, word relations, and naturalistic stimuli
- Citation to related publication:
- Zhang, Y., Han, K., Worth, R., & Liu, Z. (2020). Connecting concepts in the brain by mapping cortical representations of semantic relations. Nature communications, 11(1), 1-13. https://doi.org/10.1038/s41467-020-15804-w
- Discipline:
- Science
-
- Creator:
- Brasch, Jonathan M, Elipot, Shane, and Arbic, Brian
- Description:
- For Drifters, HYCOM, MITgcm: Spectra and kinetic energy files. Please see readme.txt for a description of all data and code contained here. and - Compare kinetic energies (KE) of high-resolution global ocean models estimated from rotary spectra to KE in surface drifter observations. - Near-inertial KE is closer to drifter observations in models with frequently updated wind forcing - Internal tide KE is closer to drifter observations in models with topographic wave drag
- Keyword:
- oceanography, rotary spectra, kinetic energy, sea surface velocity, and drifters
- Citation to related publication:
- Elipot, S., Lumpkin, R., Perez, R. C., Lilly, J. M., Early, J. J., & Sykulski, A. M. (2016). A global surface drifter data set at hourly resolution. Journal of Geophysical Research: Oceans, 121(5), 2937–2966. https://doi.org/10.1002/2016JC011716
- Discipline:
- Science
-
- Creator:
- Swiger, Brian M., Liemohn, Michael W., and Ganushkina, Natalia Y.
- Description:
- We sampled the near-Earth plasma sheet using data from the NASA Time History of Events and Macroscale Interactions During Substorms mission. For the observations of the plasma sheet, we used corresponding interplanetary observations using the OMNI database. We used these data to develop a data-driven model that predicts plasma sheet electron flux from upstream solar wind variations. The model output data are included in this work, along with code for analyzing the model performance and producing figures used in the related publication. and Data files are included in hdf5 and Python pickle binary formats; scripts included are set up for use of Python 3 to access and process the pickle binary format data.
- Keyword:
- neural network, plasma sheet, solar wind, machine learning, keV electron flux, deep learning, and space weather
- Citation to related publication:
- Swiger, B. M., Liemohn, M. W., & Ganushkina, N. Y. (2020). Improvement of Plasma Sheet Neural Network Accuracy With Inclusion of Physical Information. Frontiers in Astronomy and Space Sciences, 7. https://doi.org/10.3389/fspas.2020.00042
- Discipline:
- Science and Engineering
-
- Creator:
- Ahluwalia, Vinayak S., Steimle, Lauren N., and Denton, Brian T.
- Description:
- This repository includes test instances of infinite-horizon Markov decision processes with multiple models of parameters (i.e., "Multi-model Markov decision processes"). We generated each test instance in the dataset using a Python script. The test instances can be read in using the provided C++ and Python script. See the README for details.
- Keyword:
- Markov decision processes, mixed-integer programming, stochastic programming, and dynamic programming
- Citation to related publication:
- Ahluwalia, Steimle, and Denton. "Policy-based branch-and-bound for infinite-horizon Multi-model Markov decision processes". 2020.
- Discipline:
- Engineering
-
- Creator:
- Nasser, Ahmad and Gumise, Wonder
- Description:
- The work on accelerating authenticated boot for embedded system resulted in designing an algorithm in python to perform the random address generation and cryptographic MAC calculation. The Sampled Boot schemes implemented in this package allow a significant reduction of the time needed to authenticate firmware images during startup, while still retaining a high degree of trust. This is particularly useful for automotive applications in which startup time constraints make secure boot a time prohibitive process. and Citation for this dataset: Nasser, A., Gumise, W. (2019). Authenticated Boot Acceleration Algorithm [Code and data]. University of Michigan Deep Blue Data Repository. https://doi.org/10.7302/yeh1-1x17
- Keyword:
- Trusted Computing, IOT security, Embedded Security, and Cyber Physical Systems
- Citation to related publication:
- Nasser, A., Gumise, W., and Ma, D., "Accelerated Secure Boot for Real-Time Embedded Safety Systems," SAE Int. J. Transp. Cyber. & Privacy 2(1) : 35-48, 2019, https://doi.org/10.4271/11-02-01-0003
- Discipline:
- Science
-
- Creator:
- Robert Buckley, Grace O'Brien, and Zoe Zhou
- Description:
- The purpose of the research is to better understand and approximate the Thurston Set. This project was computational in nature and Python was used to collect our data. The data set contains encoded itineraries that can be used to compute values that are elements of the Thurston Set. A visual approximation of the Thurston Set can be found here ( https://arxiv.org/abs/1402.2008), on the first page Thurston’s own paper. The data can also be used to study the distribution of superattracting beta values within the interval (1, 2] and to explore an analogous Mandelbrot-Julia Correspondence. This research was conducted through the Lab of Geometry at Michigan under the advisement of Harrison Bray during the Fall semester of 2019. , The Python 3.x scripts in this deposit are the exact versions used to created the *.txt files that are in the zip archive. As the project continues, any expansion to the work, such as further analysis or visualization scripts, will be posted to the project's GitHub https://github.com/Tent-Maps-Team/Thurston-Set. Also, a user can reproduce our results and generate bigger datasets on machines with large amounts of memory. , and The data consists of zipper folders representing tent map itinerary orbit lengths. These orbit files can be used to create visualizations, create and explore conjectures such as refining proposed bounds on the Thurston Set and supporting an analogous Mandelbrot-Julia Correspondence. Within these zipped folders are .txt files in CSV format with the naming structure of xx_y of admissible itineraries up to the length indicated by the folder name where xx is the length of the encoded itineraries included. The txt's have a single column and each line(row) is an array representing an encoding of an itinerary. Some of the txt's have been split into multiple parts (whenever there are more than 200 MB of itinerary data) and these txt's have been numbered using the y after the underscore. As we exclude the degenerate tent map (where β = 1), we cannot have orbit length 1 or 2 and this is why the orbits start with length 3 (i.e. start with 3.zip).
- Keyword:
- Math, mathematics, tent maps, thurston, milnor, Milnor-Thurston, supperattracting, entropy, orbit, and itineraries
- Citation to related publication:
- Buckley R, O’Brien G, Zhou Z (2021). On Itineraries of Tent Maps. Forthcoming.
- Discipline:
- Other
-
- Creator:
- Mukhopadhyay, Agnit, Daniel T Welling, Michael W Liemohn, Aaron J Ridley, Shibaji Chakrabarty, and Brian J Anderson
- Description:
- An updated auroral conductance module is built for global models, using nonlinear regression & empirical adjustments to span extreme events., Expanded dataset raises the ceiling of conductance values, impacting the ionospheric potential dB/dt & dB predictions during extreme events., and Application of the expanded model with empirical adjustments refines the conductance pattern, and improves dB/dt predictions significantly.
- Keyword:
- Space Weather Forecasting, Extreme Weather, Ionosphere, Magnetosphere, MI Coupling, Ionospheric Conductance, Auroral Conductance, Aurora, SWMF, SWPC, Nonlinear Regression, and dB/dt
- Citation to related publication:
- Mukhopadhyay, A., Welling, D. T., Liemohn, M. W., Ridley, A. J., Chakraborty, S., & Anderson, B. J. (2020). Conductance Model for Extreme Events: Impact of Auroral Conductance on Space Weather Forecasts. Space Weather, 18(11), e2020SW002551. https://doi.org/10.1029/2020SW002551
- Discipline:
- Engineering and Science
-
- Creator:
- Malhotra, Garima and Ridley, Aaron
- Description:
- This research aims to understand the importance of lower thermospheric atomic oxygen on the upper thermosphere. O number densities between 95-100 km from WACCM-X are much closer to the observations from SABER instrument on TIMED satellite as compared to those from MSIS. We show in this study that the correction of the lower boundary atomic oxygen yields better agreement between GITM and GUVI O/N2 in the upper thermosphere .
- Keyword:
- Lower Thermosphere Atomic Oxygen, Thermospheric Dynamics, Thermospheric composition and mixing, Lower-Upper Thermosphere Vertical Coupling, GITM - WACCMX coupling, and Global Ionosphere Thermosphere Model
- Citation to related publication:
- Malhotra, G., Ridley, A. J., Marsh, D. R., Wu, C., Paxton, L. J., & Mlynczak, M. G. (2020). Impacts of Lower Thermospheric Atomic Oxygen on Thermospheric Dynamics and Composition Using the Global Ionosphere Thermosphere Model. Journal of Geophysical Research: Space Physics, e2020JA027877. https://doi.org/10.1029/2020JA027877
- Discipline:
- Science
- « Previous
- Next »
- 1
- 2
- 3
- 4