Search Constraints
« Previous |
1 - 10 of 16
|
Next »
Number of results to display per page
View results as:
Search Results
-
- Creator:
- Fu, Xun, Zhang, Bohao, Weber, Ceri J., Cooper, Kimberly L., Vasudevan, Ram, and Moore, Talia Y.
- Description:
- Tails used as inertial appendages induce body rotations of animals and robots---a phenomenon that is governed largely by the ratio of the body and tail moments of inertia. However, vertebrate tails have more degrees of freedom (e.g., number of joints, rotational axes) than most current theoretical models and robotic tails. To understand how morphology affects inertial appendage function, we developed an optimization-based approach that finds the maximally effective tail trajectory and measures error from a target trajectory. For tails of equal total length and mass, increasing the number of equal-length joints increased the complexity of maximally effective tail motions. When we optimized the relative lengths of tail bones while keeping the total tail length, mass, and number of joints the same, this optimization-based approach found that the lengths match the pattern found in the tail bones of mammals specialized for inertial maneuvering. In both experiments, adding joints enhanced the performance of the inertial appendage, but with diminishing returns, largely due to the total control effort constraint. This optimization-based simulation can compare the maximum performance of diverse inertial appendages that dynamically vary in moment of inertia in 3D space, predict inertial capabilities from skeletal data, and inform the design of robotic inertial appendages.
- Keyword:
- simulation, inertial maneuvering, caudal vertebrae, trajectory optimization, and reconfigurable appendages
- Citation to related publication:
- Xun Fu, Bohao Zhang, Ceri J. Weber, Kimberly L. Cooper, Ram Vasudevan, Talia Y. Moore. (in review) Jointed tails enhance control of three-dimensional body rotation.
- Discipline:
- Engineering and Science
-
- Creator:
- Skinner, Katherine A., Vasudevan, Ram, Ramanagopal, Manikandasriram S., Ravi, Radhika, Carmichael, Spencer, and Buchan, Austin D.
- Description:
- This dataset is part of a collection created to facilitate research in the use of novel sensors for autonomous vehicle perception. , The dataset collection platform is a Ford Fusion vehicle with a roof-mounted novel sensing suite, which specifically consists of forward-facing stereo uncooled thermal cameras (FLIR 40640U050-6PAAX), event cameras (iniVation DVXplorer), monochrome cameras (FLIR BFS-PGE-16S2M), and RGB cameras (FLIR BFS-PGE-50S5C) time synchronized with ground truth poses from a high precision navigation system. , Further information and resources (such as software tools for converting, managing, and viewing data files) are available on the project website: https://umautobots.github.io/nsavp , and CHANGE NOTICE (January 2024): We identified an error in our timestamp post-processing procedure that caused all camera timestamps to be offset by the exposure time of one of the cameras. We corrected the error, applied the corrected post-processing, and reuploaded the corrected files. The change impacts all camera data files. Prior to the change, the timestamps between the cameras were synchronized with submillisecond accuracy, but the camera and ground truth pose timestamps were offset by up to 0.4 ms, 3 ms, and 15 ms in the afternoon, sunset, and night sequences, respectively. This amounted in up to ~0.25 meters of position error in the night sequences. For consistency, camera calibration was rerun with the corrected calibration sequence files. The camera calibration results have therefore been updated as well, although they have not changed significantly. Finally, we previously downsampled the frame data in the uploaded calibration seqeuence, but we decided to provide the full frame data in the reupload.
- Keyword:
- novel sensing, perception, autonomous vehicles, thermal sensing, neuromorphic imaging, and event cameras
- Citation to related publication:
- https://sites.google.com/umich.edu/novelsensors2023, https://github.com/umautobots/nsavp_tools, and https://umautobots.github.io/nsavp
- Discipline:
- Engineering
-
- Creator:
- Skinner, Katherine A., Vasudevan, Ram, Ramanagopal, Manikandasriram S., Ravi, Radhika, Carmichael, Spencer, and Buchan, Austin D.
- Description:
- This dataset is part of a collection created to facilitate research in the use of novel sensors for autonomous vehicle perception. , The dataset collection platform is a Ford Fusion vehicle with a roof-mounted novel sensing suite, which specifically consists of forward-facing stereo uncooled thermal cameras (FLIR 40640U050-6PAAX), event cameras (iniVation DVXplorer), monochrome cameras (FLIR BFS-PGE-16S2M), and RGB cameras (FLIR BFS-PGE-50S5C) time synchronized with ground truth poses from a high precision navigation system. , Further information and resources (such as software tools for converting, managing, and viewing data files) are available on the project website: https://umautobots.github.io/nsavp , and CHANGE NOTICE (January 2024): We identified an error in our timestamp post-processing procedure that caused all camera timestamps to be offset by the exposure time of one of the cameras. We corrected the error, applied the corrected post-processing, and reuploaded the corrected files. The change impacts all camera data files. Prior to the change, the timestamps between the cameras were synchronized with submillisecond accuracy, but the camera and ground truth pose timestamps were offset by up to 0.4 ms, 3 ms, and 15 ms in the afternoon, sunset, and night sequences, respectively. This amounted in up to ~0.25 meters of position error in the night sequences. For consistency, camera calibration was rerun with the corrected calibration sequence files. The camera calibration results have therefore been updated as well, although they have not changed significantly. Finally, we previously downsampled the frame data in the uploaded calibration seqeuence, but we decided to provide the full frame data in the reupload.
- Keyword:
- novel sensing, perception, autonomous vehicles, thermal sensing, neuromorphic imaging, and event cameras
- Citation to related publication:
- https://sites.google.com/umich.edu/novelsensors2023, https://github.com/umautobots/nsavp_tools, and https://umautobots.github.io/nsavp
- Discipline:
- Engineering
-
- Creator:
- Skinner, Katherine A., Vasudevan, Ram, Ramanagopal, Manikandasriram S., Ravi, Radhika, Carmichael, Spencer, and Buchan, Austin D.
- Description:
- This dataset is part of a collection created to facilitate research in the use of novel sensors for autonomous vehicle perception. , The dataset collection platform is a Ford Fusion vehicle with a roof-mounted novel sensing suite, which specifically consists of forward-facing stereo uncooled thermal cameras (FLIR 40640U050-6PAAX), event cameras (iniVation DVXplorer), monochrome cameras (FLIR BFS-PGE-16S2M), and RGB cameras (FLIR BFS-PGE-50S5C) time synchronized with ground truth poses from a high precision navigation system. , Further information and resources (such as software tools for converting, managing, and viewing data files) are available on the project website: https://umautobots.github.io/nsavp , and CHANGE NOTICE (January 2024): We identified an error in our timestamp post-processing procedure that caused all camera timestamps to be offset by the exposure time of one of the cameras. We corrected the error, applied the corrected post-processing, and reuploaded the corrected files. The change impacts all camera data files. Prior to the change, the timestamps between the cameras were synchronized with submillisecond accuracy, but the camera and ground truth pose timestamps were offset by up to 0.4 ms, 3 ms, and 15 ms in the afternoon, sunset, and night sequences, respectively. This amounted in up to ~0.25 meters of position error in the night sequences. For consistency, camera calibration was rerun with the corrected calibration sequence files. The camera calibration results have therefore been updated as well, although they have not changed significantly. Finally, we previously downsampled the frame data in the uploaded calibration seqeuence, but we decided to provide the full frame data in the reupload.
- Keyword:
- novel sensing, perception, autonomous vehicles, thermal sensing, neuromorphic imaging, and event cameras
- Citation to related publication:
- https://sites.google.com/umich.edu/novelsensors2023, https://github.com/umautobots/nsavp_tools, and https://umautobots.github.io/nsavp
- Discipline:
- Engineering
-
- Creator:
- Skinner, Katherine A., Vasudevan, Ram, Ramanagopal, Manikandasriram S., Ravi, Radhika, Carmichael, Spencer, and Buchan, Austin D.
- Description:
- This dataset is part of a collection created to facilitate research in the use of novel sensors for autonomous vehicle perception. , The dataset collection platform is a Ford Fusion vehicle with a roof-mounted novel sensing suite, which specifically consists of forward-facing stereo uncooled thermal cameras (FLIR 40640U050-6PAAX), event cameras (iniVation DVXplorer), monochrome cameras (FLIR BFS-PGE-16S2M), and RGB cameras (FLIR BFS-PGE-50S5C) time synchronized with ground truth poses from a high precision navigation system. , Further information and resources (such as software tools for converting, managing, and viewing data files) are available on the project website: https://umautobots.github.io/nsavp , and CHANGE NOTICE (January 2024): We identified an error in our timestamp post-processing procedure that caused all camera timestamps to be offset by the exposure time of one of the cameras. We corrected the error, applied the corrected post-processing, and reuploaded the corrected files. The change impacts all camera data files. Prior to the change, the timestamps between the cameras were synchronized with submillisecond accuracy, but the camera and ground truth pose timestamps were offset by up to 0.4 ms, 3 ms, and 15 ms in the afternoon, sunset, and night sequences, respectively. This amounted in up to ~0.25 meters of position error in the night sequences. For consistency, camera calibration was rerun with the corrected calibration sequence files. The camera calibration results have therefore been updated as well, although they have not changed significantly. Finally, we previously downsampled the frame data in the uploaded calibration seqeuence, but we decided to provide the full frame data in the reupload.
- Keyword:
- novel sensing, perception, autonomous vehicles, thermal sensing, neuromorphic imaging, and event cameras
- Citation to related publication:
- https://sites.google.com/umich.edu/novelsensors2023, https://github.com/umautobots/nsavp_tools, and https://umautobots.github.io/nsavp
- Discipline:
- Engineering
-
- Creator:
- Skinner, Katherine A., Vasudevan, Ram, Ramanagopal, Manikandasriram S., Ravi, Radhika, Carmichael, Spencer, and Buchan, Austin D.
- Description:
- This dataset is part of a collection created to facilitate research in the use of novel sensors for autonomous vehicle perception. , The dataset collection platform is a Ford Fusion vehicle with a roof-mounted novel sensing suite, which specifically consists of forward-facing stereo uncooled thermal cameras (FLIR 40640U050-6PAAX), event cameras (iniVation DVXplorer), monochrome cameras (FLIR BFS-PGE-16S2M), and RGB cameras (FLIR BFS-PGE-50S5C) time synchronized with ground truth poses from a high precision navigation system. , Further information and resources (such as software tools for converting, managing, and viewing data files) are available on the project website: https://umautobots.github.io/nsavp , and CHANGE NOTICE (January 2024): We identified an error in our timestamp post-processing procedure that caused all camera timestamps to be offset by the exposure time of one of the cameras. We corrected the error, applied the corrected post-processing, and reuploaded the corrected files. The change impacts all camera data files. Prior to the change, the timestamps between the cameras were synchronized with submillisecond accuracy, but the camera and ground truth pose timestamps were offset by up to 0.4 ms, 3 ms, and 15 ms in the afternoon, sunset, and night sequences, respectively. This amounted in up to ~0.25 meters of position error in the night sequences. For consistency, camera calibration was rerun with the corrected calibration sequence files. The camera calibration results have therefore been updated as well, although they have not changed significantly. Finally, we previously downsampled the frame data in the uploaded calibration seqeuence, but we decided to provide the full frame data in the reupload.
- Keyword:
- novel sensing, perception, autonomous vehicles, thermal imaging, neuromorphic imaging, and event cameras
- Citation to related publication:
- https://sites.google.com/umich.edu/novelsensors2023, https://github.com/umautobots/nsavp_tools, and https://umautobots.github.io/nsavp
- Discipline:
- Engineering
-
- Creator:
- Skinner, Katherine A., Vasudevan, Ram, Ramanagopal, Manikandasriram S., Ravi, Radhika, Carmichael, Spencer, and Buchan, Austin D.
- Description:
- This dataset is part of a collection created to facilitate research in the use of novel sensors for autonomous vehicle perception. , The dataset collection platform is a Ford Fusion vehicle with a roof-mounted novel sensing suite, which specifically consists of forward-facing stereo uncooled thermal cameras (FLIR 40640U050-6PAAX), event cameras (iniVation DVXplorer), monochrome cameras (FLIR BFS-PGE-16S2M), and RGB cameras (FLIR BFS-PGE-50S5C) time synchronized with ground truth poses from a high precision navigation system. , Further information and resources (such as software tools for converting, managing, and viewing data files) are available on the project website: https://umautobots.github.io/nsavp , and CHANGE NOTICE (January 2024): We identified an error in our timestamp post-processing procedure that caused all camera timestamps to be offset by the exposure time of one of the cameras. We corrected the error, applied the corrected post-processing, and reuploaded the corrected files. The change impacts all camera data files. Prior to the change, the timestamps between the cameras were synchronized with submillisecond accuracy, but the camera and ground truth pose timestamps were offset by up to 0.4 ms, 3 ms, and 15 ms in the afternoon, sunset, and night sequences, respectively. This amounted in up to ~0.25 meters of position error in the night sequences. For consistency, camera calibration was rerun with the corrected calibration sequence files. The camera calibration results have therefore been updated as well, although they have not changed significantly. Finally, we previously downsampled the frame data in the uploaded calibration seqeuence, but we decided to provide the full frame data in the reupload.
- Keyword:
- novel sensing, perception, autonomous vehicles, thermal sensing, neuromorphic imaging, and event cameras
- Citation to related publication:
- https://sites.google.com/umich.edu/novelsensors2023, https://github.com/umautobots/nsavp_tools, and https://umautobots.github.io/nsavp
- Discipline:
- Engineering
-
- Creator:
- Skinner, Katherine A., Vasudevan, Ram, Ramanagopal, Manikandasriram S., Ravi, Radhika, Carmichael, Spencer, and Buchan, Austin D.
- Description:
- This dataset is part of a collection created to facilitate research in the use of novel sensors for autonomous vehicle perception., The dataset collection platform is a Ford Fusion vehicle with a roof-mounted novel sensing suite, which specifically consists of forward-facing stereo uncooled thermal cameras (FLIR 40640U050-6PAAX), event cameras (iniVation DVXplorer), monochrome cameras (FLIR BFS-PGE-16S2M), and RGB cameras (FLIR BFS-PGE-50S5C) time synchronized with ground truth poses from a high precision navigation system. , and Further information and resources (such as software tools for converting, managing, and viewing data files) are available on the project website: https://umautobots.github.io/nsavp
- Keyword:
- novel sensing, perception, autonomous vehicles, thermal sensing, neuromorphic imaging, and event cameras
- Citation to related publication:
- https://umautobots.github.io/nsavp, https://github.com/umautobots/nsavp_tools, and https://sites.google.com/umich.edu/novelsensors2023
- Discipline:
- Engineering
-
- Creator:
- Skinner, Katherine A., Vasudevan, Ram, Ramanagopal, Manikandasriram S., Ravi, Radhika, Carmichael, Spencer, and Buchan, Austin D.
- Description:
- This dataset is part of a collection created to facilitate research in the use of novel sensors for autonomous vehicle perception., The dataset collection platform is a Ford Fusion vehicle with a roof-mounted novel sensing suite, which specifically consists of forward-facing stereo uncooled thermal cameras (FLIR 40640U050-6PAAX), event cameras (iniVation DVXplorer), monochrome cameras (FLIR BFS-PGE-16S2M), and RGB cameras (FLIR BFS-PGE-50S5C) time synchronized with ground truth poses from a high precision navigation system. , and Further information and resources (such as software tools for converting, managing, and viewing data files) are available on the project website: https://umautobots.github.io/nsavp
- Keyword:
- novel sensing, perception, autonomous vehicles, thermal sensing, neuromorphic imaging, and event cameras
- Citation to related publication:
- https://umautobots.github.io/nsavp, https://github.com/umautobots/nsavp_tools, and https://sites.google.com/umich.edu/novelsensors2023
- Discipline:
- Engineering
-
- Creator:
- Skinner, Katherine A., Vasudevan, Ram, Ramanagopal, Manikandasriram S., Ravi, Radhika, Carmichael, Spencer, and Buchan, Austin D.
- Description:
- This dataset is part of a collection created to facilitate research in the use of novel sensors for autonomous vehicle perception. , The dataset collection platform is a Ford Fusion vehicle with a roof-mounted novel sensing suite, which specifically consists of forward-facing stereo uncooled thermal cameras (FLIR 40640U050-6PAAX), event cameras (iniVation DVXplorer), monochrome cameras (FLIR BFS-PGE-16S2M), and RGB cameras (FLIR BFS-PGE-50S5C) time synchronized with ground truth poses from a high precision navigation system. , and Further information and resources (such as software tools for converting, managing, and viewing data files) are available on the project website: https://umautobots.github.io/nsavp
- Keyword:
- novel sensing, perception, autonomous vehicles, thermal sensing, neuromorphic imaging, and event cameras
- Citation to related publication:
- https://umautobots.github.io/nsavp, https://github.com/umautobots/nsavp_tools, and https://sites.google.com/umich.edu/novelsensors2023
- Discipline:
- Engineering