Search Constraints
Filtering by:
Language
English
Remove constraint Language: English
Discipline
Engineering
Remove constraint Discipline: Engineering
Number of results to display per page
View results as:
Search Results
-
- Creator:
- BIRDS Lab, U. Michigan
- Description:
- These data were produced for ARO W911NF-14-1-0573 "Morphologically Modulated Dynamics" and ARO MURI W911NF-17-1-0306 "From Data-Driven Operator Theoretic Schemes to Prediction, Inference, and Control of Systems" to explore the trade-offs between various oscillator coupling models in modeling multilegged locomotion of Multipod robots with 6,8,10 and 12 legs. The data is stored in .csv.gz files, one file for each robot morphology. Details of how to run the processing code on the raw dataset to generate the processed files found here, as well as example code for loading the data found here, are in the README. This dataset is self contained and can be used on its own without running any of the provided code.
- Citation to related publication:
- Zhao, D. & Revzen, S. Multi-legged steering and slipping with low DoF hexapod robots Bioinspiration & biomimetics, 2020, 15, 045001 https://doi.org/10.1088/1748-3190/ab84c0, Zhao, D. Ph.D. Thesis "Locomotion of low-DOF multi-legged robots" University of Michigan 2021 https://deepblue.lib.umich.edu/handle/2027.42/169985, and BIRDS Lab Multipod robot motion tracking data - RAW data, doi:10.7302/m05a-0d90
- Discipline:
- Engineering and Science
-
- Creator:
- Attari, Ali
- Description:
- Please refer to the "README.txt" for more details., MATLAB R2018a (Mathworks, Natick, MA, USA) was used to process this data., and Excel (Microsoft Office) was used to store survey data on the comfort of both systems and also to provide absolute and relative intraobserver variablities for the DM device.
- Keyword:
- Digital Manometry
- Citation to related publication:
- Comparison of anorectal function measured using wearable digital manometry and a high resolution manometry system Attari A, Chey WD, Baker JR, Ashton-Miller JA (2020) Comparison of anorectal function measured using wearable digital manometry and a high resolution manometry system. PLOS ONE 15(9): e0228761. https://doi.org/10.1371/journal.pone.0228761
- Discipline:
- Engineering, Science, and Health Sciences
-
- Creator:
- Bougher, S. W. (CLaSP Department, University of Michigan)
- Description:
- The NASA MAVEN (Mars Atmosphere and Volatile Evolution) spacecraft, which is currently in orbit around Mars, has been taking systematic measurements of the densities and deriving temperatures in the upper atmosphere of Mars between about 140 to 240 km above the surface since late 2014. Wind measurement campaigns are also conducted once per month for 5-10 orbits. These densities, temperatures and winds change with time (e.g. solar cycle, season, local time) and location, and sometimes fluctuate quickly. Global dust storm events are also known to significantly impact these density, temperature and wind fields in the Mars thermosphere. For the current project, the inert light species helium is used to trace the circulation patterns and constrain wind magnitudes throughout the Mars thermosphere. Presently, more than 6 years of Neutral Gas and Ion Mass Spectrometer (NGIMS) measurements of helium densities have been obtained by the MAVEN team (e.g. Elrod et al., 2017; 2021; Gupta et al., 2021). Measured helium distributions are compared to simulations from a computer model of the Mars atmosphere called M-GITM (Mars Global Ionosphere-Thermosphere Model), developed at U. of Michigan. Since the global circulation plays a role in the structure, variability, and evolution of the atmosphere, understanding the processes that drive the winds in the upper atmosphere of Mars also provides the needed context for understanding helium distributions and how the atmosphere behaves as a whole system. Three dimensional M-GITM simulations for the Mars four cardinal seasons (Ls = 0, 90, 180, 270, for Mars Year 33) were conducted for detailed comparisons with NGIMS helium and CO2 distributions (Gupta et al. 2021). The M-GITM datacubes used to extract these densities (plus winds) along the trajectory of each orbit path between 140 and 240 km, are provided in this Deep Blue Data archive. README files are also provided for each datacube, detailing the contents of each file. In addition, a general README file is provided that summarizes the inputs and outputs of the M-GITM code simulations for this study. Finally, a basic version of the M-GITM code can be found on Github at https:/github.com/dpawlows/MGITM.
- Keyword:
- Mars, MAVEN Spacecraft Mission, Mars Thermosphere, Helium Density Distributions, and Neutral Gas and Ion Mass Spectrometer (NGIMS)
- Citation to related publication:
- Gupta, N., N. V. Rao, S. W. Bougher, and M. K. Elrod, Latitudinal and Seasonal Asymmetries of the Helium Bulge in the Martian Upper Atmosphere J. Geophys. Res., 126, XXXX-XXXX. doi:10.1002/2021JEXXXXXX
- Discipline:
- Engineering and Science
-
- Creator:
- Gliske, Stephen V and Stacey, William C
- Description:
- This data repository includes the quantitative features of high frequency, intracranial EEG along with all necessary scripts to reproduce the figures of the accompanying manuscript.
- Keyword:
- high frequency oscillation, HFO, high frequency activity, and epilepsy
- Citation to related publication:
- (under review)
- Discipline:
- Science, Engineering, and Health Sciences
-
- Creator:
- Ding, J, Moore, TY, and Gan, Z
- Description:
- Jerboas (Jaculus jaculus) are bipedal hopping rodents that frequently transition between gaits (running, hopping, and skipping) throughout their entire speed range. It has been hypothesized that these non-cursorial bipedal gait transitions are likely to enhance their maneuverability and predator evasion ability. However, it is difficult to use the underlying dynamics of these locomotion patterns to predict gait transitions due to the large number of degrees of freedom expressed by the animals. To this end, we used empirical jerboa kinematics and dynamics to develop a unified Spring Loaded Inverted Pendulum model with defined passive swing leg motions. The simulated trajectories from the model precisely matched the experimental data. Jerboas were observed to apply different neutral swing leg angles during locomotion. By investigating the gait structure of the model with coupled and uncoupled neutral swing leg, we found two set of mechanism may explain the frequent gait transitions of jerboas.
- Keyword:
- jerboa, legged locomotion, gait transition, Legged Robots, Dynamics, Bipedal locomotion, and Non-cursorial locomotion
- Citation to related publication:
- Ding, Moore, Gan (submitted) A template model explains jerboa gait transitions across a broad range of speeds. Frontiers in Bioengineering And Biotechnology
- Discipline:
- Science and Engineering
-
- Creator:
- Wu, Ziyou, Brunton, Steven L, and Revzen, Shai
- Description:
- These codes were produced as part of the Army Research Office Multi-University Research Initiative ARO MURI W911NF-17-1-0306 "From Data-Driven Operator Theoretic Schemes to Prediction, Inference, and Control of Systems" The code can be run using the runAll.sh shell script (in Linux and OS-X); code should work similarly under windows.
- Keyword:
- DMD, dimensionality reduction, dynamical systems, and nonlinear dynamics
- Discipline:
- Engineering and Science
-
- Creator:
- Smith, Joeseph P., Gronewold, Andrew D., Read, Laura, Crooks, James L., School for Environment and Sustainability, University of Michigan, Department of Civil and Environmental Engineering, University of Michigan, and Cooperative Institute for Great Lakes Research
- Description:
- Using the statistical programming package R ( https://cran.r-project.org/), and JAGS (Just Another Gibbs Sampler, http://mcmc-jags.sourceforge.net/), we processed multiple estimates of the Laurentian Great Lakes water balance components -- over-lake precipitation, evaporation, lateral tributary runoff, connecting channel flows, and diversions -- feeding them into prior distributions (using data from 1950 through 1979), and likelihood functions. The Bayesian Network is coded in the BUGS language. Water balance computations assume that monthly change in storage for a given lake is the difference between beginning of month water levels surrounding each month. For example, the change in storage for June 2015 is the difference between the beginning of month water level for July 2015 and that for June 2015., More details on the model can be found in the following summary report for the International Watersheds Initiative of the International Joint Commission, where the model was used to generate a new water balance historical record from 1950 through 2015: https://www.glerl.noaa.gov/pubs/fulltext/2018/20180021.pdf. Large Lake Statistical Water Balance Model (L2SWBM): https://www.glerl.noaa.gov/data/WaterBalanceModel/ , and This data set has a shorter timespan to accommodate a prior which uses data not used in the likelihood functions.
- Keyword:
- Water, Balance, Great Lakes, Laurentian, Machine, Learning, Lakes, Bayesian, and Network
- Citation to related publication:
- Smith, J., Gronewald, A. et al. Summary Report: Development of the Large Lake Statistical Water Balance Model for Constructing a New Historical Record of the Great Lakes Water Balance. Submitted to: The International Watersheds Initiative of the International Joint Commission. Accessible at https://www.glerl.noaa.gov/pubs/fulltext/2018/20180021.pdf, Large Lake Statistical Water Balance Model (L2SWBM). https://www.glerl.noaa.gov/data/WaterBalanceModel/, and Gronewold, A.D., Smith, J.P., Read, L. and Crooks, J.L., 2020. Reconciling the water balance of large lake systems. Advances in Water Resources, p.103505.
- Discipline:
- Science and Engineering
-
- Creator:
- Danforth, Shannon M.
- Description:
- This dataset includes three MATLAB data files for each subject: raw motion capture and force plate data, processed motion capture and force plate data, and sagittal-plane data segmented into individual trials labeled “nominal” or “tripped.” We include two example scripts for using the segmented trial data to tabulate trip recovery strategies across subjects and plot the sorted recovery strategies.
- Keyword:
- Trip recovery, Biomechanics, and Human locomotion
- Citation to related publication:
- S. M. Danforth, X. Liu, M. J. Ward, P.D. Holmes, and R. Vasudevan, "Predicting sagittal-plane swing hip kinematics in response to trips," IEEE Robotics and Automation Letters, 2022.
- Discipline:
- Engineering
-
- Creator:
- Huffaker, Jordan S., Kummerfeld, Jonathan K., Lasecki, Walter S., and Ackerman, Mark S.
- Description:
- The following files include supplementary materials for our CHI 2020 paper "Crowdsourced Detection of Emotionally Manipulative Language". Namely, these materials include the dataset that was used in the evaluation. See the paper for more details.
- Keyword:
- Crowdsourcing, Media Manipulation, Rhetoric, and Emotion
- Citation to related publication:
- J.S. Huffaker, J.K. Kummerfeld, W.S. Lasecki, M.S. Ackerman. Crowdsourced Detection of Emotionally Manipulative Language. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI 2020). Honolulu, HI. 2020.
- Discipline:
- Engineering
-
- Creator:
- Ayumi Fujisaki-Manome
- Description:
- Precipitation impacts on ice cover and water temperature in the Laurentian Great Lakes were examined using state-of-art coupled ice-hydrodynamic models. Numerical experiments were conducted for the recent anomalously cold (2014-2015) and warm (2015-2016) winters that were accompanied by high and low ice coverage over the lakes, respectively. The results of numerical experiments showed that, snow cover on the ice, which is the manifestation of winter precipitation, reduced the total ice volume (or mean ice thickness) in all of the Great Lakes, shortened the ice duration, and allowed earlier warming of water surface. The reduced ice volume was due to the thermal insulation of snow cover. The surface albedo was also increased by snow cover, but its impact on the delay the melting of ice was overcome by the thermal insulation effect. During major snowstorms, snowfall over the open lake caused notable cooling of the water surface due to latent heat absorption. Overall, the sensible heat flux from rain in spring and summer was found to have negligible impacts on the water surface temperature. Although uncertainties remain in over-lake precipitation estimates and model’s representation of snow on the ice, this study demonstrated that winter precipitation, particularly snowfall on the ice and water surfaces, is an important contributing factor in Great Lakes ice production and thermal conditions from late fall to spring.
- Keyword:
- Great Lakes, lake ice, numerical modeling, and precipitation
- Citation to related publication:
- Fujisaki-Manome, A., Anderson, E. J., Kessler, J. A., Chu, P. Y., Wang, J., & Gronewold, A. D. (2020). Simulating Impacts of Precipitation on Ice Cover and Surface Water Temperature Across Large Lakes. Journal of Geophysical Research: Oceans, 125(5), e2019JC015950. https://doi.org/10.1029/2019JC015950
- Discipline:
- Science and Engineering