Jerboas (Jaculus jaculus) are bipedal hopping rodents that frequently transition between gaits (running, hopping, and skipping) throughout their entire speed range. It has been hypothesized that these non-cursorial bipedal gait transitions are likely to enhance their maneuverability and predator evasion ability. However, it is difficult to use the underlying dynamics of these locomotion patterns to predict gait transitions due to the large number of degrees of freedom expressed by the animals. To this end, we used empirical jerboa kinematics and dynamics to develop a unified Spring Loaded Inverted Pendulum model with defined passive swing leg motions. The simulated trajectories from the model precisely matched the experimental data. Jerboas were observed to apply different neutral swing leg angles during locomotion. By investigating the gait structure of the model with coupled and uncoupled neutral swing leg, we found two set of mechanism may explain the frequent gait transitions of jerboas.
Ding, Moore, Gan (submitted) A template model explains jerboa gait transitions across a broad range of speeds. Frontiers in Bioengineering And Biotechnology