This section contains work related to the modeling of voltage degradation in a 24 cell PEM fuel cell stack with 300 cm2 cross-sectional area. The experimental hardware used to validate the model consists of a computer controlled system that coordinates air, hydrogen, cooling, and electrical subsystems to operate the stack. Dry hydrogen is pressure regulated for full utilization in the dead-ended anode. Using a solenoid valve, the anode is periodically purged to recover the gradual degradation in voltage. A membrane based humidifier controls the vapor content of the cathode gas stream while a mass flow controller is used to regulate the flow to the desired stoichiometry.
Citation to related publication:
Denise A. McKay, Jason B. Siegel, William Ott, and Anna G. Stefanopoulou. Parameterization and prediction of temporal fuel cell voltage behavior during flooding and drying conditions. Journal of Power Sources, 178(1):207 - 222, 2008. https://doi.org/10.1016/j.jpowsour.2007.12.031