Search Constraints
1 - 3 of 3
Number of results to display per page
View results as:
Search Results
-
- Creator:
- Eckels, Joshua D.
- Description:
- The goal of the research was to train a surrogate model for the prediction of electric field distribution for a given electrospray emitter geometry design. The surrogate is to be used in reduced-fidelity modeling of electrospray thruster arrays. The code repository is included in the README.txt file.
- Keyword:
- Electrospray design, Martinez-Sanchez hyperboloid solution, and Electrospray engineering toolkit (ESPET)
- Citation to related publication:
- J.D. Eckels, C.B. Whittaker, B.A. Jorns, A.A. Gorodetsky, B. St. Peter, R.A. Dressler, “Simulation-based surrogate methodology of electric field for electrospray emitter geometry design and uncertainty quantification”, presented at the 37th International Electric Propulsion Conference, Boston, MA USA, June19-23, 2022 Available: https://www.electricrocket.org/IEPC_2022_Papers.html
- Discipline:
- Engineering
-
- Creator:
- Towne, Aaron, Yeh, Chi-An., Patel, Het, and Taira, Kunihiko
- Description:
- This dataset contains data from a three-dimensional large eddy simulation of Mach 0.3 flow over a NACA 0012 airfoil at Reynolds number 23,000, which features a transitional boundary layer, separation over a recirculation bubble, and a turbulent wake. The dataset contains 16,000 time-resolved snapshots of the mid-span and spanwise-averaged velocity fields. All data are stored within hdf5 files, and a Matlab script showing how the data can be read and manipulated is provided. Please see the ‘airfoilLES_README.pdf’ file for more information. We recommend using the ‘airfoilLES_example.zip’ file as an entry point to the dataset. and The dataset is part of “A database for reduced-complexity modeling of fluid flows” (see references below) and is intended to aid in the conception, training, demonstration, evaluation, and comparison of reduced-complexity models for fluid mechanics. The paper introduces the flow setup and computational methods, describes the available data, and provides an example of how these data can be used for reduced-complexity modeling. Users of these data should cite the papers listed below.
- Citation to related publication:
- Towne, A., Dawson, S., Brès, G. A., Lozano-Durán, A., Saxton-Fox, T., Parthasarthy, A., Biler, H., Jones, A. R., Yeh, C.-A., Patel, H., Taira, K. (2022). A database for reduced-complexity modeling of fluid flows. AIAA Journal 61(7): 2867-2892. and Yeh, C.-A. and Taira, K. (2019) Resolvent-analysis-based design of airfoil separation control. Journal of Fluid Mechanics, 867:572–610.
- Discipline:
- Science and Engineering
-
- Creator:
- Fu, Xun, Zhang, Bohao, Weber, Ceri J., Cooper, Kimberly L., Vasudevan, Ram, and Moore, Talia Y.
- Description:
- Tails used as inertial appendages induce body rotations of animals and robots---a phenomenon that is governed largely by the ratio of the body and tail moments of inertia. However, vertebrate tails have more degrees of freedom (e.g., number of joints, rotational axes) than most current theoretical models and robotic tails. To understand how morphology affects inertial appendage function, we developed an optimization-based approach that finds the maximally effective tail trajectory and measures error from a target trajectory. For tails of equal total length and mass, increasing the number of equal-length joints increased the complexity of maximally effective tail motions. When we optimized the relative lengths of tail bones while keeping the total tail length, mass, and number of joints the same, this optimization-based approach found that the lengths match the pattern found in the tail bones of mammals specialized for inertial maneuvering. In both experiments, adding joints enhanced the performance of the inertial appendage, but with diminishing returns, largely due to the total control effort constraint. This optimization-based simulation can compare the maximum performance of diverse inertial appendages that dynamically vary in moment of inertia in 3D space, predict inertial capabilities from skeletal data, and inform the design of robotic inertial appendages. and 2025-01-31: In this update, we include the code required to run the simulations and optimizations. We updated the readme file to reflect this addition
- Keyword:
- simulation, inertial maneuvering, caudal vertebrae, trajectory optimization, and reconfigurable appendages
- Citation to related publication:
- Xun Fu, Bohao Zhang, Ceri J. Weber, Kimberly L. Cooper, Ram Vasudevan, Talia Y. Moore. (in review) Jointed tails enhance control of three-dimensional body rotation.
- Discipline:
- Engineering and Science