Search Constraints
Filtering by:
Language
Python
Remove constraint Language: Python
Discipline
Engineering
Remove constraint Discipline: Engineering
Discipline
Science
Remove constraint Discipline: Science
1 - 7 of 7
Number of results to display per page
View results as:
Search Results
-
- Creator:
- Hong, Yi, Fry, Lauren M., Orendorf, Sophie, Ward, Jamie L., Mroczka, Bryan, Wright, David, and Gronewold, Andrew
- Description:
- Accurate estimation of hydro-meteorological variables is essential for adaptive water management in the North American Laurentian Great Lakes. However, only a limited number of monthly datasets are available nowadays that encompass all components of net basin supply (NBS), such as over-lake precipitation (P), evaporation (E), and total runoff (R). To address this gap, we developed a daily hydro-meteorological dataset covering an extended period from 1979 to 2022 for each of the Great Lakes. The daily P and E were derived from six global gridded reanalysis climate datasets (GGRCD) that include both P and E estimates, and R was calculated from National Water Model (NWM) simulations. Ensemble mean values of the difference between P and E (P – E) and NBS were obtained by analyzing daily P, E, and R. Monthly averaged values derived from our new daily dataset were validated against existing monthly datasets. This daily hydro-meteorological dataset has the potential to serve as a validation resource for current data and analysis of individual NBS components. Additionally, it could offer a comprehensive depiction of weather and hydrological processes in the Great Lakes region, including the ability to record extreme events, facilitate enhanced seasonal analysis, and support hydrologic model development and calibration. The source code and data representation/analysis figures are also made available in the data repository.
- Keyword:
- Great Lakes, Hydrometeorological, National Water Model, Daily, Overlake precipitation, Overlake evaporation, Total runoff, Net Basin Supply, and Water Balance
- Discipline:
- Science and Engineering
-
- Creator:
- Lee, Shih Kuang, Tsai, Sun Ting, and Glotzer, Sharon C.
- Description:
- The trajectory data and codes were generated for our work "Classification of complex local environments in systems of particle shapes through shape-symmetry encoded data augmentation" (amidst peer review process). The data sets contain trajectory data in GSD file format for 7 test systems, including cubic structures, two-dimensional and three-dimensional patchy particle shape systems, hexagonal bipyramids with two aspect ratios, and truncated shapes with two degrees of truncation. Besides, the corresponding Python code and Jupyter notebook used to perform data augmentation, MLP classifier training, and MLP classifier testing are included.
- Keyword:
- Machine Learning, Colloids Self-Assembly, Crystallization, and Order Parameter
- Citation to related publication:
- https://doi.org/10.48550/arXiv.2312.11822
- Discipline:
- Other, Science, and Engineering
-
- Creator:
- Sun, Hu, Ren, Jiaen, Chen, Yang, Zou, Shasha, Chang, Yurui, Wang, Zihan, and Coster, Anthea
- Description:
- Our research focuses on providing a fully-imputed map of the worldwide total electron content with high resolution and spatial-temporal smoothness. We fill in the missing values of the original Madrigal TEC maps via estimating the latent feature of each latitude and local time along the 2-D grid and give initial guess of the missing regions based on pre-computed spherical harmonics map. The resulting TEC map has high imputation accuracy and the ease of reproducing. All data are in HDF5 format and are easy to read using the h5py package in Python. The TEC map is grouped in folders based on years and each file contains a single-day data of 5-min cadence. Each individual TEC map is of size 181*361. and WARNING: 2023-12-01 the data file for 2019-Jan-03 has badly fitted values. Please avoid using it. All other days' files are ready to use.
- Keyword:
- Total Electron Content, Matrix Completion, VISTA, Spherical Harmonics, and Spatial-Temporal Smoothing
- Citation to related publication:
- Sun, H., Hua, Z., Ren, J., Zou, S., Sun, Y., & Chen, Y. (2022). Matrix completion methods for the total electron content video reconstruction. The Annals of Applied Statistics, 16(3), 1333-1358., Sun, H., Chen, Y., Zou, S., Ren, J., Chang, Y., Wang, Z., & Coster, A. (2023). Complete Global Total Electron Content Map Dataset based on a Video Imputation Algorithm VISTA. Scientific Data, in press., and Zou, S., Ren, J., Wang, Z., Sun, H., & Chen, Y. (2021). Impact of storm-enhanced density (SED) on ion upflow fluxes during geomagnetic storm. Frontiers in Astronomy and Space Sciences, 8, 746429.
- Discipline:
- Science and Engineering
-
- Creator:
- Ponder, Brandon M., Ridley, Aaron J., Goel, Ankit, and Bernstein, Dennis S.
- Description:
- This research was completed to statistically validate that a data-model refinement technique could integrate real measurements to remove bias from physics-based models via changing the forcing parameters such as the thermal conductivity coefficients.
- Keyword:
- Thermosphere, GITM, CHAMP, GRACE, MSIS, Upper Atmosphere Modeling, and Data Assimilation
- Citation to related publication:
- Ponder, B. M., Ridley, A. J., Goel, A., & Bernstein, D. S. (2023). Improving forecasting ability of GITM using data-driven model refinement. Space Weather, 21, e2022SW003290. https://doi.org/10.1029/2022SW003290
- Discipline:
- Engineering and Science
-
- Creator:
- Swiger, Brian M., Liemohn, Michael W., and Ganushkina, Natalia Y.
- Description:
- We sampled the near-Earth plasma sheet using data from the NASA Time History of Events and Macroscale Interactions During Substorms mission. For the observations of the plasma sheet, we used corresponding interplanetary observations using the OMNI database. We used these data to develop a data-driven model that predicts plasma sheet electron flux from upstream solar wind variations. The model output data are included in this work, along with code for analyzing the model performance and producing figures used in the related publication. and Data files are included in hdf5 and Python pickle binary formats; scripts included are set up for use of Python 3 to access and process the pickle binary format data.
- Keyword:
- neural network, plasma sheet, solar wind, machine learning, keV electron flux, deep learning, and space weather
- Citation to related publication:
- Swiger, B. M., Liemohn, M. W., & Ganushkina, N. Y. (2020). Improvement of Plasma Sheet Neural Network Accuracy With Inclusion of Physical Information. Frontiers in Astronomy and Space Sciences, 7. https://doi.org/10.3389/fspas.2020.00042
- Discipline:
- Science and Engineering
-
- Creator:
- Mukhopadhyay, Agnit, Daniel T Welling, Michael W Liemohn, Aaron J Ridley, Shibaji Chakrabarty, and Brian J Anderson
- Description:
- An updated auroral conductance module is built for global models, using nonlinear regression & empirical adjustments to span extreme events., Expanded dataset raises the ceiling of conductance values, impacting the ionospheric potential dB/dt & dB predictions during extreme events., and Application of the expanded model with empirical adjustments refines the conductance pattern, and improves dB/dt predictions significantly.
- Keyword:
- Space Weather Forecasting, Extreme Weather, Ionosphere, Magnetosphere, MI Coupling, Ionospheric Conductance, Auroral Conductance, Aurora, SWMF, SWPC, Nonlinear Regression, and dB/dt
- Citation to related publication:
- Mukhopadhyay, A., Welling, D. T., Liemohn, M. W., Ridley, A. J., Chakraborty, S., & Anderson, B. J. (2020). Conductance Model for Extreme Events: Impact of Auroral Conductance on Space Weather Forecasts. Space Weather, 18(11), e2020SW002551. https://doi.org/10.1029/2020SW002551
- Discipline:
- Engineering and Science
-
- Creator:
- Agnit Mukhopadhyay
- Description:
- Conducting quantitative metrics-based performance analysis of first-principles-based global magnetosphere models is an essential step in understanding their capabilities and limitations, and providing scope for improvements in order to enhance their space weather prediction capabilities for a range of solar conditions. In this study, a detailed comparison of the performance of three global magnetohydrodynamic (MHD) models in predicting the Earth’s magnetopause location and ionospheric cross polar cap potential (CPCP) has been presented. Using the Community Coordinated Modeling Center’s Run-on-Request system and extensive database on results from various magnetospheric scenarios simulated for a variety of solar wind conditions, the aforementioned model predictions have been compared for magnetopause standoff distance estimations obtained from six empirical models, and with cross polar cap potential estimations obtained from the Assimmilative Mapping of Ionospheric Electrodynamics (AMIE) Model and the Super Dual Auroral Radar Network (SuperDARN) observations. We have considered a range of events spanning different space weather activity to analyze the performance of these models. Using a fit performance metric analysis for each event, we have quantified the models’ reproducibility of magnetopause standoff distances and CPCP against empirically-predicted observations, and identified salient features that govern the performance characteristics of the modeled magnetospheric and ionospheric quantities.
- Citation to related publication:
- Mukhopadhyay, A., Jia, X., Welling, D. T., & Liemohn, M. W. (2021). Global Magnetohydrodynamic Simulations: Performance Quantification of Magnetopause Distances and Convection Potential Predictions. Frontiers in Astronomy and Space Sciences, 8. https://doi.org/10.3389/fspas.2021.637197
- Discipline:
- Engineering and Science