This dataset supports the findings of Hille et al. (2021, in review) in Geophysical Research Letters. In this article, we present a multivariate analysis of extreme storm events that occur during the Indian summer monsoon over the Himalayan Range in central Nepal. We resolve storm events at sub daily durations by merging NASA’s Global Precipitation Mission (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) 30-minute, gridded 0.1x0.1-degree precipitation product with local rain gauges operated by the Nepal Department of Hydrology and Meteorology (DHM) and the International Centre for Integrated Mountain Development (ICIMOD). We quantify spatial variability in extreme rainfall by isolating storms over a specific intensity threshold and pairing a principal components analysis with a K-means clustering approach to group storms of similar characteristics. and We find that frequent and intense storms occur over the forefront of the central Himalayan range and coincide with a locus of monsoon-driven landslide density. This pattern agrees with observations of elevated annual precipitation volumes near the Himalayan physiographic transition from low to high relief (Bookhagen and Burbank, 2010), and is consistent with orographically-influenced rainfall over other mountain ranges (Marra et al., 2021). In addition to presenting novel methodology to quantifying storm variability, our results highlight the strong orographic effect on precipitation intensity and duration, as well as an association of shallow bedrock landsliding frequency with intense precipitation.
Hille et al. (2021, in review). The orographic influence on storm variability, extreme rainfall characteristics and rainfall-triggered landsliding. Geophysical Research Letters. Forthcoming