We are experiencing some technical issues. It is adviced that no deposits or edits be done at this time. Once the issue is resolved, this message will be disabled. Thank you!
Need language around using Deep Blue Data as a repository for your NIH data sharing plan? See Data Sharing Boilerplate
In this work, we trained gradient boosted trees using XGBoost to predict the SYM-H forecasting using different combinations of solar wind and interplanetary magnetic field (IMF) parameters. Data are in csv and Python pickle formats.
Iong, D., Y. Chen, G. Toth, S. Zou, T. I. Pulkkinen, J. Ren, E. Camporeale, and T. I. Gombosi, New Findings from Explainable SYM-H Forecasting using Gradient Boosting Machines, Space Weather,11, accepted, 2022. https://doi.org/10.1002/essoar.10508063.3