Amyloid nanofibers are abundant in microorganisms and are integral components of many biofilms, serving various purposes, from virulent to structural. Nonetheless, the precise characterization of bacterial amyloid nanofibers has been elusive, with incomplete and contradicting results. The present work focuses on the molecular details and characteristics of PSMa1-derived functional amyloids present in Staphylococcus aureus biofilms, using a combination of computational and experimental techniques, to develop a model that can aid the design of compounds to control amyloid formation. Results from molecular dynamics simulations, guided and supported by spectroscopy and microscopy, show that PSMa1 amyloid nanofibers present a helical structure formed by two protofilaments, have an average diameter of about 12 nm, and adopt a left-handed helicity with a periodicity of approximately 72 nm. The chirality of the self-assembled nanofibers, an intrinsic geometric property of its constituent peptides, is central to determining the fibers' lateral growth.
Paolo Elvati, Chloe Luyet, Yichun Wang, Changjiang Liu, J. Scott VanEpps, Nicholas A. Kotov, and Angela Violi ACS Applied Nano Materials 2023 6 (8), 6594-6604 DOI: 10.1021/acsanm.3c00174