Search Constraints
Number of results to display per page
View results as:
Search Results
-
- Creator:
- Vaskov, Alex K, Vu, Philip P, North, Naia, Davis, Alicia J, Kung, Theodore A, Gates, Deanna H, Cederna, Paul S, and Chestek, Cynthia A
- Description:
- The data was used to calibrate and simulate pattern recognition algorithms for the following publication: Surgically Implanted Electrodes Enable Real-Time Finger and Grasp Pattern Recognition for Prosthetic Hands (medRxiv 2020, IEEE TRO in review). Each data file is named as follows Px_PostureSet.cs... [more]The data was used to calibrate and simulate pattern recognition algorithms for the following publication: Surgically Implanted Electrodes Enable Real-Time Finger and Grasp Pattern Recognition for Prosthetic Hands (medRxiv 2020, IEEE TRO in review). Each data file is named as follows Px_PostureSet.csv. Where Px is the patient number. The 1 of 10 posture set contains individual finger and intrinsic thumb movements, the grasps posture set contains a fewer number of combined finger movements. P1’s calibration data for individual fingers is labelled 1 of 12 because it also includes two grasps, which were removed for analysis in the publication. The first column of each .csv file is the experiment time in seconds. The second column is the posture of the cue hand at that timestamp. The rest of the columns are the raw EMG data in microvolts sampled at 30KSps. A legend of the movement postures, each patients EMG channels, and suggested signal processing and filtering is included in DataLabellingAndProcessing.pdf [less]
- Keyword:
- pattern recognition, electromyography, regenerative peripheral nerve interface, intramuscular electrodes, and myoelectric prostheses
- Citation to related publication:
- Surgically Implanted Electrodes Enable Real-Time Finger and Grasp Pattern Recognition for Prosthetic Hands A. K. Vaskov, P. P. Vu, N. North, A. J. Davis, T. A. Kung, D. H. Gates, P. S. Cederna, C. A. Chestek medRxiv 2020.10.28.20217273; doi: https://doi.org/10.1101/2020.10.28.20217273
- Discipline:
- Science and Engineering
-
- Creator:
- Shi, Yining
- Description:
- Statistical study of Swarm observations and two Earth magnetic field models: IGRF-12 and CHAOS-6 categorized by Kp*10 index. Data analysis done on https://viresclient.readthedocs.io/en/l... [more]Statistical study of Swarm observations and two Earth magnetic field models: IGRF-12 and CHAOS-6 categorized by Kp*10 index. Data analysis done on https://viresclient.readthedocs.io/en/latest/ JupyterLab. [less]
- Discipline:
- Engineering
-
- Creator:
- BIRDS Lab, U. Michigan
- Description:
- These data were produced in an attempt to characterize the turning and steering behaviors of 1-DoF multi-legged (hexpedal in this case) robots. Such turning behaviors require sliding contact points. The .tar file contains multiple trials in .csv.gz format, with names following an informative naming... [more]These data were produced in an attempt to characterize the turning and steering behaviors of 1-DoF multi-legged (hexpedal in this case) robots. Such turning behaviors require sliding contact points. The .tar file contains multiple trials in .csv.gz format, with names following an informative naming convention documented in the README. Additional metadata for the trials is given in the metadata.py file in both machine and human readable form. [less]
- Keyword:
- robot, multilegged, and steering
- Citation to related publication:
- Dan Zhao and Shai Revzen 2020 Bioinspir. Biomim. 15 045001 https://doi.org/10.1088/1748-3190/ab84c0
- Discipline:
- Engineering
-
- Creator:
- Zhang, Kaihua and Collette, Matthew D.
- Description:
- This Ph.D. research focuses on two subject areas: experimental and numerical model, which serves as two essential parts of a digital twin. A digital twin contains models of real-world structures and fuses data from observations of the structures and scale experiment to pull the models into better ag... [more]This Ph.D. research focuses on two subject areas: experimental and numerical model, which serves as two essential parts of a digital twin. A digital twin contains models of real-world structures and fuses data from observations of the structures and scale experiment to pull the models into better agreement with the real world. Digital twin models have the promise of representing complex marine structures and providing enhanced lifecycle performance and risk forecasts. Experimentally verifying the updating approaches is necessary but rarely performed. Thus, the proposed work is designing an experiment and developing a numerical model updated by the experimental data. The dataset contains all the data collected in the experiment of a four-crack hexagon- shaped specimen is presented, designed to mimic many of the properties of complex degrading marine structural systems, such as crack interaction, component inter- dependence, redundant load path, and non-binary failure. [less]
- Keyword:
- System Reliability, Dynamic Bayesian Networks, Fatigue Experiment, Crack Length Measurement, Experimental Validation, Reliability Prediction
- Citation to related publication:
- "Evaluating Crack Growth Prediction in Structural Systems with Dynamic Bayesian Networks", submitted to Computers and Structure and Zhang, K., & Collette, M. (2021). Experimental investigation of structural system capacity with multiple fatigue cracks. Marine Structures, 78, 102943. https://doi.org/10.1016/j.marstruc.2021.102943
- Discipline:
- Engineering
-
- Creator:
- James, David A. and Lokam, Nikhil
- Description:
- The object of this project is to provide researchers and students with a tool to allow them to develop an intuitive understanding of singular vectors and singular values. 2x2 matrices A with real entries map circles to ellipses; in particular, unit circles centered at the origin to ellipses centere... [more]The object of this project is to provide researchers and students with a tool to allow them to develop an intuitive understanding of singular vectors and singular values. 2x2 matrices A with real entries map circles to ellipses; in particular, unit circles centered at the origin to ellipses centered at the origin. It is known that the points on the ellipse farthest from the origin correspond to the singular vectors of A. Users can use the GUI to enter matrices of their choice and explore to visually self-determine the singular vectors/values. [less]
- Keyword:
- SVD, Singular Value Decomposition, Singular Vector, Singular Value, and Matrix
- Discipline:
- Science and Engineering
-
- Creator:
- Swiger, Brian M., Liemohn, Michael W., and Ganushkina, Natalia Y.
- Description:
- We sampled the near-Earth plasma sheet using data from the NASA Time History of Events and Macroscale Interactions During Substorms mission. For the observations of the plasma sheet, we used corresponding interplanetary observations using the OMNI database. We used these data to develop a data-drive... [more]We sampled the near-Earth plasma sheet using data from the NASA Time History of Events and Macroscale Interactions During Substorms mission. For the observations of the plasma sheet, we used corresponding interplanetary observations using the OMNI database. We used these data to develop a data-driven model that predicts plasma sheet electron flux from upstream solar wind variations. The model output data are included in this work, along with code for analyzing the model performance and producing figures used in the related publication. and Data files are included in hdf5 and Python pickle binary formats; scripts included are set up for use of Python 3 to access and process the pickle binary format data. [less]
- Keyword:
- neural network, plasma sheet, solar wind, machine learning, keV electron flux, deep learning, and space weather
- Citation to related publication:
- Swiger, B. M., Liemohn, M. W., & Ganushkina, N. Y. (2020). Improvement of Plasma Sheet Neural Network Accuracy With Inclusion of Physical Information. Frontiers in Astronomy and Space Sciences, 7. https://doi.org/10.3389/fspas.2020.00042
- Discipline:
- Science and Engineering
-
- Creator:
- Sugrue, Dennis P.
- Description:
- This data was collected and processed as part of ongoing research to characterize waterway infrastructure performance in the Great Lakes. These dataset enable researchers to evaluate both travel time and vessel carrying capacity in the waterway., I assembled AIS data from the MarineCadastre website... [more]This data was collected and processed as part of ongoing research to characterize waterway infrastructure performance in the Great Lakes. These dataset enable researchers to evaluate both travel time and vessel carrying capacity in the waterway., I assembled AIS data from the MarineCadastre website for UTM Zones 15-18 for the years 2015-2017 available in csv format. I combined files for Navigation Seasons, defined as March to January and clipped data for a set of predefined features using a python code (AIS Data Processor.ipynb). The code writes the appended and clipped files to csv for a single Navigation Year. The written files are submitted here: Trimmed_NY2015_new.csv (n=13,228,824); Trimmed_NY2016_new.csv (n=18,782,779); Trimmed_NY2017_new.csv (n=16,816,603), Data fusion of AIS and LPMS used the following algorithm for a subset of 30 vessels on the waterway. Let A be the original AIS data and let B be the subset of records for vessel i within geographic feature j. The script for this analysis is attached (Maritime Data Fusion.ipynb), For Connecting Channels and select segments of the Great Lakes: 1. Subset A for vessel i. Let B_i⊆A | 2. Subset B_i in geographic feature, Gj. Let B_ij⊆B_i | 3. Select tmin for each unique date or any consecutive dates, record as vessel i arrival to feature j, b_ijt | 4. IF feature j is a harbor or lock, select tmax for each unique date or any consecutive dates, record as departure from feature j, b_ijt | 5. Calculate time elapsed between features for each vessel, For vessel passage through the Soo Locks: 1. Subset A for vessel i. Let B_i⊆A | 2. Subset B_i in geographic boundaries (46.5<Lat<46.6, -84.4<Lon<-84.3). Let C_(i,lock)⊆B_i | 3. Select tmin for each unique date or any consecutive dates, record as arrival to Soo Locks | 4. Select tmax for each unique date or any consecutive dates, record as departure to Soo Locks | 5. Calculate time delta between arrival and departure times, and The merged dataset is included here along with the raw LPMS data: Merged_Data_new.csv (n=42,021), LPMS obscured.csv (n=55,342). VesselNames have been obscured in these datasets to protect proprietary information for shipping companies. [less]
- Keyword:
- Maritime Transportation Efficiency, Data Fusion, Waterway Performance
- Citation to related publication:
- Sugrue, D., Adriaens, P. (in review) Multi-dimensional Data Fusion to Evaluate Waterway Performance: Maritime Transport Efficiency of Iron Ore on the Great Lakes. Water Resources Research.
- Discipline:
- Engineering
-
- Creator:
- Agrawal, Mayank and Glotzer, Sharon C
- Description:
- Micron-scale robots require systems that can morph into arbitrary target configurations controlled by external agents such as heat, light, electricity, and chemical environment. Achieving this behavior using conventional approaches is challenging because the available materials at these scales are n... [more]Micron-scale robots require systems that can morph into arbitrary target configurations controlled by external agents such as heat, light, electricity, and chemical environment. Achieving this behavior using conventional approaches is challenging because the available materials at these scales are not programmable like their macroscopic counterparts. To overcome this challenge, we propose a design strategy to make a robotic machine that is both programmable and compatible with colloidal-scale physics. Our strategy uses motors in the form of active colloidal particles that constantly propel forward. We sequence these motors end-to-end in a closed chain forming a two-dimensional loop that folds under its mechanical constraints. We encode the target loop shape and its motion by regulating six design parameters, each scale-invariant and achievable at the colloidal scale. The research dataset includes simulation, visualization, and analysis scripts and results generated for the 2D chain loops of self-propelling particles. File Description:, -- arrows_folding - Contains the data for the folded chain loop shapes resembling an arrowhead., -- bending_vs_variation - Contains the data to study the stability of a particular shape in simulations as one of the segments of the shape bends and/or the distribution of propulsion on it varies., -- curved_triangle - Contains the data to study motion and bending of a triangle shape made using chain loop., -- example_shapes - Contains data for various examples of shapes that can be generated by designing the chain loops., -- nskT_vs_fakT - Contains the data for a specific shape to study the effect of scaling up the number of particles (governed by ns) and the propulsion (governed by fa) in its chain., -- stability - Contains the data and theoretical model (stability.py) to study the stability of the six different shapes., -- tuning_design_forM - Contains the data for sequential tuning the design parameters to fold the shape "M" as described in the corresponding publication., and -- two_neighboring_cds_segments_ - Contains the data to study a system of two neighboring chain segments with respect to different parameters discussed in the publication. [less]
- Keyword:
- active particles, colloidal robotics, design, kilobots, and morphological control
- Citation to related publication:
- Agrawal, M, Glotzer SC. (2020). Scale-free, programmable design of morphable chain loops of kilobots and colloidal motors. PNAS. www.pnas.org/cgi/doi/10.1073/pnas.1922635117
- Discipline:
- Engineering
-
- Creator:
- Moniri, Saman, Xiao, Xianghui, and Shahani, Ashwin J.
- Description:
- The data is comprised of 22 directories, each housing a .hdf file of the X-ray projections recorded during solidification of Al-Si-Cu-Sr. The flat and dark projections are also included as two separate .hdf files (total file count: 24). The raw data file is in .hdf format and can be reconstructed in... [more]The data is comprised of 22 directories, each housing a .hdf file of the X-ray projections recorded during solidification of Al-Si-Cu-Sr. The flat and dark projections are also included as two separate .hdf files (total file count: 24). The raw data file is in .hdf format and can be reconstructed into .tiff, e.g., by using the TomoPy toolbox in Python. [less]
- Keyword:
- Crystallization, growth modifiers, silicon, in situ, X-ray tomography
- Citation to related publication:
- Wang, Y., Gao, J., Ren, Y., De Andrade, V., & Shahani, A. J. (2020). Formation of a Three-Phase Spiral Structure Due to Competitive Growth of a Peritectic Phase with a Metastable Eutectic. JOM, 72(8), 2965–2973. https://doi.org/10.1007/s11837-020-04237-x
- Discipline:
- Engineering
-
- Creator:
- Whitaker, Steven T., Nataraj, Gopal, Nielsen, Jon-Fredrik, and Fessler, Jeffrey A.
- Description:
- File: P,jf06Sep2019,mese.7 The multi-echo spin echo (MESE) data was acquired using a 3D acquisition with an initial 90 degree excitation pulse followed by 32 refocusing (180 degree) pulses, resulting in 32 echoes with echo spacing of 10 ms. The repetition time of the sequence was 1200 ms. Each refoc... [more]File: P,jf06Sep2019,mese.7 The multi-echo spin echo (MESE) data was acquired using a 3D acquisition with an initial 90 degree excitation pulse followed by 32 refocusing (180 degree) pulses, resulting in 32 echoes with echo spacing of 10 ms. The repetition time of the sequence was 1200 ms. Each refocusing pulse was flanked by crusher gradients to impart 14 cycles of phase across the imaging volume. The initial excitation pulse had time-bandwidth product of 6, duration of 3 ms, and slab thickness of 0.9 cm, and each refocusing pulse had time-bandwidth product of 2, duration of 2 ms, and slab thickness of 2.1 cm. The scan took 36 min 11 s and covered a field of view (FOV) of 22 x 22 x 0.99 cm^3 with matrix size 200 x 200 x 9., File: P,jf06Sep2019,b1.7 The Bloch-Siegert (BS) scans were acquired using a 3D acquisition. The excitation pulse of these scans had time-bandwidth product of 8 and duration of 1 ms. The pair of scans used +/-4 kHz off-resonant Fermi pulses between excitation and readout. The BS scans took 2 min 40 s in total and covered a FOV of 22 x 22 x 0.99 cm^3 with matrix size 200 x 50 x 9., File: P,jf06Sep2019,mwf.7 The small-tip fast recovery (STFR) scans were acquired using a 3D acquisition. The first two and last two scans were pairs of spoiled gradient-recalled echo (SPGR) scans with echo time difference of 2.3 ms. (In the related paper, only the first set was used, i.e., only 11 of the 13 scans were used.) The remaining scans used scan parameters that were optimized to minimize the Cramer-Rao Lower Bound (CRLB) of estimates of myelin water fraction (MWF). The RF pulses had time-bandwidth product of 8 and duration of 1 ms. Each pair of SPGR scans took 58 s and the nine STFR scans took 3 min 36 s for a total scan time of 5 min 32 s (4 min 34 s if one pair of SPGR scans is ignored). The scans covered a field of view (FOV) of 22 x 22 x 0.99 cm^3 with matrix size 200 x 200 x 9., File: meseslice5.mat Contains the 32 echoes of the MESE image data for the middle slice of the imaging volume. Saved using Mathworks MATLAB R2019a., File: b1slice5.mat Contains the transmit field inhomogeneity map for the middle slice of the imaging volume., File: recon.jld Key "img" contains the 11 STFR images for the middle slice of the imaging volume. Key "b0map" contains a field map estimated from the two SPGR scans. Key "mask" contains a mask of the voxels for which to estimate MWF. Key "T1img" contains a T1-weighted image for anatomical reference., File: headmask.mat Contains a mask for visualizing just the brain (ignores the skull) for the middle slice of the imaging volume., File: rois.mat Contains masks for various regions of interest (ROIs), used for computing statistics. Keys "mtopleft", "mtopright", "mbottomleft", and "mbottomright" refer to the corresponding locations on the anatomical reference image (see related paper). Key "mic" refers to the internal capsules, and key "mgm" refers to a gray matter ROI., The raw data files (P-files) can be read into the Julia programming language using the Julia version of the Michigan Image Reconstruction Toolbox ( https://github.com/JeffFessler/MIRT.jl) or into MATLAB using TOPPE ( https://github.com/toppeMRI/toppe). The reconstructed slices used in the related paper are provided for convenience, and are stored in .mat files that can be loaded into Julia (using the package MAT.jl) or MATLAB, and a .jld file that can be loaded into Julia (using the package JLD.jl). The Julia code for processing the data to create MWF maps is hosted publicly on GitHub at https://github.com/StevenWhitaker/STFR-MWF., and Files: toppe-master.zip and MIRT.jl-master.zip are archived versions of the TOPPE and Michigan Image Reconstruction Toolbox code sets from GitHub as of 2/28/2020. [less]
- Keyword:
- myelin, machine learning, kernel learning, magnetic resonance imaging, and scan design
- Citation to related publication:
- Whitaker, S. T., Nataraj, G., Nielsen, J.-F., & Fessler, J. A. (2020). Myelin water fraction estimation using small-tip fast recovery MRI. Magnetic Resonance in Medicine, 84(4), 1977–1990. https://doi.org/10.1002/mrm.28259
- Discipline:
- Health Sciences and Engineering