Search Constraints
Filtering by:
Creator
Sanja Panovska
Remove constraint Creator: Sanja Panovska
Discipline
Engineering
Remove constraint Discipline: Engineering
1 entry found
Number of results to display per page
View results as:
Search Results
-
- Creator:
- Agnit Mukhopadhyay, Sanja Panovska, Raven Garvey, Michael Liemohn, Natalia Ganjushkina, Austin Brenner, Ilya Usoskin, Michael Balikhin, and Daniel Welling
- Description:
- In the recent geological past, Earth’s magnetic field reduced to 4% of the modern values and the magnetic poles moved severely apart from the geographic poles causing the Laschamps geomagnetic excursion, which happened about 41 millennia ago. The excursion lasted for about two millennia, with the peak strength reduction and dipole tilting lasting for a shorter period of 300 years. During this period, the geomagnetic field exhibited significant differences from the modern nearly-aligned dipolar field, causing non-dipole variables to mimic a magnetic field akin to the outer planets while displaying a significantly reduced magnetic strength. However, the precise magnetospheric configuration and their electrodynamic coupling with the atmosphere have remained critically understudied. This dataset contains the first space plasma investigation of the exact geomagnetic conditions in the near-Earth space environment during the excursion. The study contains a full 3D reconstruction and analysis of the geospace system including the intrinsic geomagnetic field, magnetospheric system and the upper atmosphere, linked in sequence using feedback channels for distinct temporal epochs. The reconstruction was conducted using the LSMOD.2 model, Block Adaptive Tree Solar wind-Roe-Upwind Scheme (BATS-R-US) Model and the MAGnetosphere-Ionosphere-Thermosphere (MAGNIT) Auroral Precipitation Model, all of which are publicly-available models. The dataset contains the raw data from each of these models, in addition to the images/post-processing results generated using these models. Paleomagnetic data produced by LSMOD.2 can be visualized using a combination of linear plotting and contour plotting tools available commonly in visualization software like Python (e.g. Python/Matplotlib) or MATLAB. Standard tools to read and visualize BATS-R-US and MAGNIT output are already publicly available using IDL and Python (see SpacePy/PyBats - https://spacepy.github.io/pybats.html). For information and details about the post-processed data, visualization and analysis, please contact the authors for details. The anthropological dataset can be visualized using a shape file reader (e.g. Python/GeoPandas) and a linear plotting tool (e.g. Python/Matplotlib).
- Discipline:
- Engineering and Science