Search Constraints
1 - 2 of 2
Number of results to display per page
View results as:
Search Results
-
- Creator:
- Lin, Austin J, Lei, Shunbo, Keskar, Aditya, Hiskens, Ian A, Johnson, Jeremiah X , Mathieu, Johanna L, Kennedy, Tim, DeMink, Scott, Morgan, Kevin, Flynn, Connor, Giessner, Paul, Anderson, David, Dongmo, Jordan, Afshari, Sina, Li, Han, and Ceilsinki, Andrew
- Description:
- This is a subset of the SHIFDR dataset collection containing data from 14 buildings in Southeast Michigan. The full dataset collection can be found at https://deepblue.lib.umich.edu/data/collections/vh53ww273?locale=en and Organization: We include a subfolder for each building, identified by name. All buildings have been renamed after lakes to protect the identity of the building. Within each building subfolder, there is fan power (i.e. current measurements from which fan power can be computed), building automation system (BAS), whole building electrical load (WBEL), and voltage data collected over the course of our experimentation from 2017 to 2021. All experiments were conducted in the summer months and a full schedule of Demand Response (DR) events is included along with each building in the ‘Event_Schedule.csv’ file. The building information file contains general information about the buildings, pertinent to the experiments we conducted. There is also a folder labeled ‘2021 Preprocessed data’ which contains combined BAS and fan power data from the summer of 2021. This data has been lightly processed to calculate fan power from current measurements and interpolate BAS data to 1 minute intervals. These act as an easy-to-use starting point for data analysis.
- Citation to related publication:
- A.J. Lin, S. Lei, A. Keskar, I.A. Hiskens, J.X. Johnson, and J.L. Mathieu. “The Sub-metered HVAC Implemented For Demand Response (SHIFDR) Dataset,” Submitted, 2023.
- Discipline:
- Engineering
-
- Creator:
- Mathieu, Johanna L, Balzano, Laura, and Ledva, Gregory S
- Description:
- This data set contains the relevant time series for constructing and testing electricity load models within the related paper. The files within are a '.mat' file that contains the data and a 'readme.txt' file detailing the contents of the data.
- Keyword:
- Output feedback, Online learning, Machine learning, Real-time filtering, and Energy disaggregation
- Citation to related publication:
- Ledva, G.S., Balzano, L., Mathieu, J.L., 2018. Real-Time Energy Disaggregation of a Distribution Feeder’s Demand Using Online Learning. IEEE Trans. Power Syst. 33, 4730–4740. Accessible at https://arxiv.org/abs/1701.04389 and https://doi.org/10.1109/TPWRS.2018.2800535
- Discipline:
- Engineering