The sensitive measurement of specific protein biomarkers is important for medical diagnostics and research. However, existing methods for quantifying proteins use antibody probes that cannot distinguish between specific and nonspecific binding, limiting their sensitivity and specificity. This work establishes a method for distinguishing between specific binding to the target protein and nonspecific binding to assay surfaces using single-molecule kinetic measurements with dynamically binding probes. This is significant because it permits extremely sensitive protein measurements without requiring a high-affinity detection antibody or any washing steps, enabling streamlined and sensitive quantification of proteins even when no pair of high-quality, tightly binding antibodies is available.
This work contains the experimental data and associated analysis that are described in the research publication entitled "Ultra-specific and Amplification-free Quantification of Mutant DNA by Single-molecule Kinetic Fingerprinting". This work contains multiple zip files, each of which represents one of the principal experiment groups presented in the publication. Each experiment group contains movie and analysis files corresponding to various experimental conditions related to that experiment group.