Search Constraints
Filtering by:
Language
English
Remove constraint Language: English
Discipline
Engineering
Remove constraint Discipline: Engineering
Discipline
Science
Remove constraint Discipline: Science
Number of results to display per page
View results as:
Search Results
-
- Creator:
- Hong, Yi, Fry, Lauren M., Orendorf, Sophie, Ward, Jamie L., Mroczka, Bryan, Wright, David, and Gronewold, Andrew
- Description:
- Accurate estimation of hydro-meteorological variables is essential for adaptive water management in the North American Laurentian Great Lakes. However, only a limited number of monthly datasets are available nowadays that encompass all components of net basin supply (NBS), such as over-lake precipitation (P), evaporation (E), and total runoff (R). To address this gap, we developed a daily hydro-meteorological dataset covering an extended period from 1979 to 2022 for each of the Great Lakes. The daily P and E were derived from six global gridded reanalysis climate datasets (GGRCD) that include both P and E estimates, and R was calculated from National Water Model (NWM) simulations. Ensemble mean values of the difference between P and E (P – E) and NBS were obtained by analyzing daily P, E, and R. Monthly averaged values derived from our new daily dataset were validated against existing monthly datasets. This daily hydro-meteorological dataset has the potential to serve as a validation resource for current data and analysis of individual NBS components. Additionally, it could offer a comprehensive depiction of weather and hydrological processes in the Great Lakes region, including the ability to record extreme events, facilitate enhanced seasonal analysis, and support hydrologic model development and calibration. The source code and data representation/analysis figures are also made available in the data repository.
- Keyword:
- Great Lakes, Hydrometeorological, National Water Model, Daily, Overlake precipitation, Overlake evaporation, Total runoff, Net Basin Supply, and Water Balance
- Discipline:
- Science and Engineering
-
- Creator:
- Lee, Shih Kuang, Tsai, Sun Ting, and Glotzer, Sharon C.
- Description:
- The trajectory data and codes were generated for our work "Classification of complex local environments in systems of particle shapes through shape-symmetry encoded data augmentation" (amidst peer review process). The data sets contain trajectory data in GSD file format for 7 test systems, including cubic structures, two-dimensional and three-dimensional patchy particle shape systems, hexagonal bipyramids with two aspect ratios, and truncated shapes with two degrees of truncation. Besides, the corresponding Python code and Jupyter notebook used to perform data augmentation, MLP classifier training, and MLP classifier testing are included.
- Keyword:
- Machine Learning, Colloids Self-Assembly, Crystallization, and Order Parameter
- Citation to related publication:
- https://doi.org/10.48550/arXiv.2312.11822
- Discipline:
- Other, Science, and Engineering
-
- Creator:
- Elvati, Paolo, Luyet, Chloe, Wang, Yichun, Liu, Changjiang, VanEpps, J. Scott, Kotov, Nicholas A., and Violi, Angela
- Description:
- Amyloid nanofibers are abundant in microorganisms and are integral components of many biofilms, serving various purposes, from virulent to structural. Nonetheless, the precise characterization of bacterial amyloid nanofibers has been elusive, with incomplete and contradicting results. The present work focuses on the molecular details and characteristics of PSMa1-derived functional amyloids present in Staphylococcus aureus biofilms, using a combination of computational and experimental techniques, to develop a model that can aid the design of compounds to control amyloid formation. Results from molecular dynamics simulations, guided and supported by spectroscopy and microscopy, show that PSMa1 amyloid nanofibers present a helical structure formed by two protofilaments, have an average diameter of about 12 nm, and adopt a left-handed helicity with a periodicity of approximately 72 nm. The chirality of the self-assembled nanofibers, an intrinsic geometric property of its constituent peptides, is central to determining the fibers' lateral growth.
- Keyword:
- molecular self-assembly, computational nanotechnology, nanobiotechnology, and structural properties
- Citation to related publication:
- Paolo Elvati, Chloe Luyet, Yichun Wang, Changjiang Liu, J. Scott VanEpps, Nicholas A. Kotov, and Angela Violi ACS Applied Nano Materials 2023 6 (8), 6594-6604 DOI: 10.1021/acsanm.3c00174
- Discipline:
- Engineering and Science
-
- Creator:
- Wallace, Dylan M, Benyamini, Miri, Nason-Tomaszewski, Samuel R, Costello, Joseph T, Cubillos, Luis H, Mender, Matthew J, Temmar, Hisham, Willsey, Matthew S, Patil, Parag P, Chestek, Cynthia A, and Zacksenhouse, Miriam
- Description:
- This is data from Wallace, Benyamini et al., 2023, Journal of Neural Engineering. There are two sets of data included: 1. Neural features and error labels used to train error classifiers for each day used in the study 2. Trial data from an example experiment day (Monkey N, Day 6), with runs for offline calibration, online brain control, error monitoring, and error correction. The purpose of this study was to investigate the use of error signals in motor cortex to improve brain-machine interface (BMI) performance for control of two finger groups. All data is contained in .mat files, which can be opened using MATLAB or the Python SciPy library.
- Keyword:
- Brain-machine interface (BMI), Error detection, and Neural recording
- Citation to related publication:
- Wallace, D. M., Benyamini, M., Nason-Tomaszewski, S. R., Costello, J. T., Cubillos, L. H., Mender, M. J., Temmar, H., Willsey, M. S., Patil, P. G., Chestek, C. A., & Zacksenhouse, M. (2023). Error detection and correction in intracortical brain–machine interfaces controlling two finger groups. Journal of Neural Engineering, 20(4), 046037. https://doi.org/10.1088/1741-2552/acef95
- Discipline:
- Engineering, Science, and Health Sciences
-
- Creator:
- Sun, Hu, Ren, Jiaen, Chen, Yang, Zou, Shasha, Chang, Yurui, Wang, Zihan, and Coster, Anthea
- Description:
- Our research focuses on providing a fully-imputed map of the worldwide total electron content with high resolution and spatial-temporal smoothness. We fill in the missing values of the original Madrigal TEC maps via estimating the latent feature of each latitude and local time along the 2-D grid and give initial guess of the missing regions based on pre-computed spherical harmonics map. The resulting TEC map has high imputation accuracy and the ease of reproducing. All data are in HDF5 format and are easy to read using the h5py package in Python. The TEC map is grouped in folders based on years and each file contains a single-day data of 5-min cadence. Each individual TEC map is of size 181*361. and WARNING: 2023-12-01 the data file for 2019-Jan-03 has badly fitted values. Please avoid using it. All other days' files are ready to use.
- Keyword:
- Total Electron Content, Matrix Completion, VISTA, Spherical Harmonics, and Spatial-Temporal Smoothing
- Citation to related publication:
- Sun, H., Hua, Z., Ren, J., Zou, S., Sun, Y., & Chen, Y. (2022). Matrix completion methods for the total electron content video reconstruction. The Annals of Applied Statistics, 16(3), 1333-1358., Sun, H., Chen, Y., Zou, S., Ren, J., Chang, Y., Wang, Z., & Coster, A. (2023). Complete Global Total Electron Content Map Dataset based on a Video Imputation Algorithm VISTA. Scientific Data, in press., and Zou, S., Ren, J., Wang, Z., Sun, H., & Chen, Y. (2021). Impact of storm-enhanced density (SED) on ion upflow fluxes during geomagnetic storm. Frontiers in Astronomy and Space Sciences, 8, 746429.
- Discipline:
- Science and Engineering
-
- Creator:
- Brian, Chen
- Description:
- The procedure followed while creating this data is summarized in Section II of Chen, Brian, et al. "Behavioral cloning in atari games using a combined variational autoencoder and predictor model." 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2021. This data is not a result of a research but an intermediate product that is used in research. This dataset is generated to train a behavioral cloning framework from gameplay screen captures and keystrokes of an "expert" player. The RL agent that is trained using "RL Baselines Zoo package" acts as the "expert" player, whose decision making process we desire to learn. In addition to behavioral cloning experiments, this dataset is further used to demonstrate the efficacy of a novel incremental tensor decomposition algorithm on image-based data streams.
- Keyword:
- Imitation Learning, Behavioral Cloning, Reinforcement Learning, Machine Learning, and Gameplay Data
- Citation to related publication:
- Chen, Brian, et al. "Behavioral cloning in atari games using a combined variational autoencoder and predictor model." 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2021., Aksoy, Doruk, et al. "An Incremental Tensor Train Decomposition Algorithm." arXiv preprint arXiv:2211.12487 (2022)., and Chen, Brian, et al. "Low-Rank Tensor-Network Encodings for Video-to-Action Behavioral Cloning", forthcoming
- Discipline:
- Engineering and Science
-
- Creator:
- Towne, Aaron, Yeh, Chi-An., Patel, Het, and Taira, Kunihiko
- Description:
- This dataset contains data from a three-dimensional large eddy simulation of Mach 0.3 flow over a NACA 0012 airfoil at Reynolds number 23,000, which features a transitional boundary layer, separation over a recirculation bubble, and a turbulent wake. The dataset contains 16,000 time-resolved snapshots of the mid-span and spanwise-averaged velocity fields. All data are stored within hdf5 files, and a Matlab script showing how the data can be read and manipulated is provided. Please see the ‘airfoilLES_README.pdf’ file for more information. We recommend using the ‘airfoilLES_example.zip’ file as an entry point to the dataset. and The dataset is part of “A database for reduced-complexity modeling of fluid flows” (see references below) and is intended to aid in the conception, training, demonstration, evaluation, and comparison of reduced-complexity models for fluid mechanics. The paper introduces the flow setup and computational methods, describes the available data, and provides an example of how these data can be used for reduced-complexity modeling. Users of these data should cite the papers listed below.
- Citation to related publication:
- Towne, A., Dawson, S., Brès, G. A., Lozano-Durán, A., Saxton-Fox, T., Parthasarthy, A., Biler, H., Jones, A. R., Yeh, C.-A., Patel, H., Taira, K. (2022). A database for reduced-complexity modeling of fluid flows. AIAA Journal 61(7): 2867-2892. and Yeh, C.-A. and Taira, K. (2019) Resolvent-analysis-based design of airfoil separation control. Journal of Fluid Mechanics, 867:572–610.
- Discipline:
- Science and Engineering
-
- Creator:
- Towne, Aaron, Jones, Anya, and Biler, Hulya
- Description:
- This dataset contains experimental measurements of a flat-plate airfoil passing through a large-amplitude transverse gust. The dataset contains an ensemble of of the airfoil-gust encounter to account for variability in the gust profile, and each realization contains time-resolved force measurements and planar PIV velocity fields. All data are stored within hdf5 files, and a Matlab script showing how the data can be read and manipulated is provided. Please see the ‘airfoilEXP_README.pdf’ file for more information. We recommend using the ‘airfoilEXP_example.zip’ file as an entry point to the dataset. and The dataset is part of “A database for reduced-complexity modeling of fluid flows” (see references below) and is intended to aid in the conception, training, demonstration, evaluation, and comparison of reduced-complexity models for fluid mechanics. The paper introduces the flow setup and computational methods, describes the available data, and provides an example of how these data can be used for reduced-complexity modeling. Users of these data should cite the papers listed below.
- Keyword:
- fluid mechanics and aerodynamics
- Citation to related publication:
- Towne, A., Dawson, S., Brès, G. A., Lozano-Durán, A., Saxton-Fox, T., Parthasarthy, A., Biler, H., Jones, A. R., Yeh, C.-A., Patel, H., Taira, K. (2022). A database for reduced-complexity modeling of fluid flows. AIAA Journal 61(7): 2867-2892., Biler, H., Sedky, G., Jones, A. R., Saritas, M. and Cetiner, O. (2021) Experimental investigation of transverse and vortex gust encounters at low Reynolds numbers. AIAA Journal, 59(3):786–799., and Andreu-Angulo, I., Babinsky, H., Biler, H., Sedky, G. and Jones, A. R. (2020) Effect of transverse gust velocity profiles. AIAA Journal, 58(12):5123–5133.
- Discipline:
- Science and Engineering
-
- Creator:
- Towne, Aaron and Dawson, Scott
- Description:
- This dataset contains data from direct numerical simulations of two-dimensional stationary and pitching flat-plate airfoils at Reynolds number 100. The dataset contains time-resolved snapshots of the velocity field, lift and drag coefficients, and airfoil kinematics spanning 40-100 convective time units. Cases include a stationary airfoil and eight different pitching frequencies. All data are stored within hdf5 files, and a Matlab script showing how the data can be read and manipulated is provided. Please see the ‘airfoilDNS_README.pdf’ file for more information. We recommend using the ‘airfoilDNS_example.zip’ file as an entry point to the dataset. and The dataset is part of “A database for reduced-complexity modeling of fluid flows” (see references below) and is intended to aid in the conception, training, demonstration, evaluation, and comparison of reduced-complexity models for fluid mechanics. The paper introduces the flow setup and computational methods, describes the available data, and provides an example of how these data can be used for reduced-complexity modeling. Users of these data should cite the papers listed below.
- Keyword:
- fluid mechanics and aerodynamics
- Citation to related publication:
- Towne, A., Dawson, S., Brès, G. A., Lozano-Durán, A., Saxton-Fox, T., Parthasarthy, A., Biler, H., Jones, A. R., Yeh, C.-A., Patel, H., Taira, K. (2022). A database for reduced-complexity modeling of fluid flows. AIAA Journal 61(7): 2867-2892. and Dawson, S. T. M., Floryan, D. C., Rowley, C. W., and Hemati, M. S. (2016) Lift enhancement of high angle of attack airfoils using periodic pitching. AIAA Paper 2016-2069.
- Discipline:
- Engineering and Science
-
- Creator:
- Towne, Aaron S. and Brès, Guillaume
- Description:
- This dataset contains data from a large eddy simulation of a turbulent jet at Mach number 0.9. The dataset contains 10000 time-resolved snapshots of three-dimensional velocity, density, and pressure fields spanning 2000 acoustic time units and also includes pre-processed azimuthal Fourier modes for each snapshot and the mean flow. All data are stored within hdf5 files, and a Matlab script showing how the data can be read and manipulated is provided. Please see the ‘jet_README.pdf’ file for more information. We recommend using the ‘jet_example.zip’ file as an entry point to the dataset. and The dataset is part of “A database for reduced-complexity modeling of fluid flows” (see references below) and is intended to aid in the conception, training, demonstration, evaluation, and comparison of reduced-complexity models for fluid mechanics. The paper introduces the flow setup and computational methods, describes the available data, and provides two examples of how these data can be used for reduced-complexity modeling. Users of these data should cite the two papers listed below.
- Keyword:
- fluid mechanics, jets, and turbulence
- Citation to related publication:
- Towne, A., Dawson, S., Brès, G. A., Lozano-Durán, A., Saxton-Fox, T., Parthasarthy, A., Biler, H., Jones, A. R., Yeh, C.-A., Patel, H., Taira, K. (2022). A database for reduced-complexity modeling of fluid flows. AIAA Journal 61(7): 2867-2892. and Brès, G. A., Jordan, P., Jaunet, V., Le Rallic, M., Cavalieri, A. V. G., Towne, A., Lele, S. K., Colonius, T., Schmidt, O. T. (2018) Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets. J. Fluid Mech., 851:83–124.
- Discipline:
- Engineering and Science