In this work, we trained gradient boosted trees using XGBoost to predict the SYM-H forecasting using different combinations of solar wind and interplanetary magnetic field (IMF) parameters. Data are in csv and Python pickle formats.
Iong, D., Y. Chen, G. Toth, S. Zou, T. I. Pulkkinen, J. Ren, E. Camporeale, and T. I. Gombosi, New Findings from Explainable SYM-H Forecasting using Gradient Boosting Machines, Space Weather,11, accepted, 2022. https://doi.org/10.1002/essoar.10508063.3