Search Constraints
Filtering by:
Discipline
Engineering
Remove constraint Discipline: Engineering
Discipline
Science
Remove constraint Discipline: Science
Number of results to display per page
View results as:
Search Results
-
- Creator:
- Isaacoff, Benjamin P., Li, Yilai, Lee, Stephen A., and Biteen, Julie S.
- Description:
- This is the experimental data referenced in our manuscript entitled “SMALL-LABS: An algorithm for measuring single molecule intensity and position in the presence of obscuring backgrounds .” These live-cell single-molecule imaging movies were used as a test of the SMALL-LABS single-molecule image analysis algorithm. The dataset comprises two movies; each one is provided both as a .tif stack and as an .avi file. The movie called “low_bg” has a standard low background, and the movie called “high_bg” includes a high fluorescent background produced by an external 488-nm laser.
- Keyword:
- single-molecule, microscopy, image analysis, mirobiology, and bacteria
- Citation to related publication:
- B.P. Isaacoff, Y. Li, S.A. Lee, J.S. Biteen, "SMALL-LABS: Measuring Single-Molecule Intensity and Position in Obscuring Backgrounds." Biophysical Journal, 975-982, 116, 2019. https://doi.org/10.1016/j.bpj.2019.02.006
- Discipline:
- Engineering and Science
-
- Creator:
- Mirshams Shahshahani, Payam
- Description:
- Investigating minimum human reaction times is often confounded by the motivation, training, and state of arousal of the subjects. We used the reaction times of athletes competing in the shorter sprint events in the Athletics competitions in recent Olympics (2004-2016) to determine minimum human reaction times because there's little question as to their motivation, training, or state of arousal. The reaction times of sprinters however are only available on the IAAF web page for each individual heat, in each event, at each Olympic. Therefore we compiled all these data into two separate excel sheets which can be used for further analyses.
- Keyword:
- minimum reaction time, sprinter, Olympics, Athletics, sex difference, starting block, and false start
- Citation to related publication:
- Mirshams Shahshahani P, Lipps DB, Galecki AT, Ashton-Miller JA (2018) On the apparent decrease in Olympic sprinter reaction times. PLoS ONE 13(6): e0198633. https://doi.org/10.1371/journal.pone.0198633
- Discipline:
- Engineering, Health Sciences, Science, Other, and General Information Sources
-
- Creator:
- Nguyen, Thanh H., Wright, Mason, Wellman, Michael P., and Singh, Satinder
- Description:
- In this work , we study the problem of allocating limited security countermeasures to protect network data from cyber-attacks, for scenarios modeled by Bayesian attack graphs. We consider multi-stage interactions between a network administrator and cybercriminals, formulated as a security game. We propose parameterized heuristic strategies for the attacker and defender and provide detailed analysis of their time complexity. Our heuristics exploit the topological structure of attack graphs and employ sampling methods to overcome the computational complexity in predicting opponent actions. Due to the complexity of the game, we employ a simulation-based approach and perform empirical game analysis over an enumerated set of heuristic strategies. Finally, we conduct experiments in various game settings to evaluate the performance of our heuristics in defending networks, in a manner that is robust to uncertainty about the security environment.
- Keyword:
- Empirical Game-Theoretic Analysis, Multi-stage Security Games, Attack Graph, Game Theory, and Moving Target Defense
- Citation to related publication:
- Nguyen, T. H., Wright, M., Wellman, M. P., & Singh, S. (2017). Multi-stage attack graph security games: Heuristic strategies, with empirical game-theoretic analysis. In MTD 2017 - Proceedings of the 2017 Workshop on Moving Target Defense, co-located with CCS 2017 (Vol. 2017-January, pp. 87-97). Association for Computing Machinery, Inc. https://doi.org/10.1145/3140549.3140562
- Discipline:
- Science and Engineering
-
- Creator:
- Gliske, Stephen V and Stacey, William C
- Description:
- This data is part of a large program to translate detection and interpretation of HFOs into clinical use. A zip file is included which contains hfo detections, metadata, and Matlab scripts. The matlab scripts analyze this input data and produce figures as in the referenced paper (note: the blind source separation method is stochastic, and so the figures may not be exactly the same). A file "README.txt" provides more detail about each individual file within the zip file.
- Keyword:
- hfo, high frequency oscillation, ripple, fast ripple, blind source separation, non-negative matrix factorization, and temporal variability
- Citation to related publication:
- Stephen V. Gliske, Zachary T. Irwin, Cynthia Chestek, Garnett L. Hegeman, Benjamin Brinkmann, Oren Sagher, Hugh J. L. Garton, Greg A. Worrell, William C. Stacey. "Variability in the location of High Frequency Oscillations during prolonged intracranial EEG recordings." Nature Communications. https://doi.org/10.1038/s41467-018-04549-2
- Discipline:
- Science, Engineering, and Health Sciences
-
- Creator:
- Mathews, Elizabeth and Verhoff, Frank
- Description:
- Each pdf is an electronic version of the paper output for each experiment. Each text file is the electronic version of the data on the computer cards for each experiment. These text files are directly readable by Excel. Once in Excel, the data can be manipulated as desired. Additional information is in the theses.
- Keyword:
- Two Liquid Phase Processes, Droplet Size and Concentration, Population Balances, and Dispersed Phase Mixing
- Citation to related publication:
- Ross, S. L. (1971). Measurements and models of the dispersed phase mixing process (Doctoral dissertation). Retrieved from http://hdl.handle.net/2027.42/136886 and Verhoff, F. H. (1969). A study of the bivariate analysis of dispersed phase mixing (Doctoral dissertation). Retrieved from http://hdl.handle.net/2027.42/137651
- Discipline:
- Science and Engineering
-
- Creator:
- Larson, Ronald G., Wen, Fei, Huang, Wenjun, and Huang, Ming
- Description:
- We provide the parameters used in Umbrella Sampling simulations reported in our study "Efficient Estimation of Binding Free Energies between Peptides and an MHC Class II Molecule Using Coarse-Grained Molecular Dynamics Simulations with a Weighted Histogram Analysis Method", namely the set positions and spring constants for each window in simulations. Two tables are provided. Table 1 lists the names of the peptides and their corresponding sequences. Table 2 lists the parameters. The abstract of our work is the following: We estimate the binding free energy between peptides and an MHC class II molecule using molecular dynamics (MD) simulations with Weighted Histogram Analysis Method (WHAM). We show that, owing to its more thorough sampling in the available computational time, the binding free energy obtained by pulling the whole peptide using a coarse-grained (CG) force field (MARTINI) is less prone to significant error induced by biased-sampling than using an atomistic force field (AMBER). We further demonstrate that using CG MD to pull 3-4 residue peptide segments while leaving the remain-ing peptide segments in the binding groove and adding up the binding free energies of all peptide segments gives robust binding free energy estimations, which are in good agreement with the experimentally measured binding affinities for the peptide sequences studied. Our approach thus provides a promising and computationally efficient way to rapidly and relia-bly estimate the binding free energy between an arbitrary peptide and an MHC class II molecule.
- Keyword:
- Molecular Dynamics, Binding Free Energy, Protein, MHC, and Coarse-Grained
- Citation to related publication:
- M. Huang, W. Huang, F. Wen, R. G. Larson. J. Comput. Chem. 2017, 38, 2007–2019. https://doi.org/10.1002/jcc.24845
- Discipline:
- Science and Engineering
-
- Creator:
- Stoev, Stilian and Hu, Weifeng
- Description:
- Many data sets come as point patterns of the form (longitude, latitude, time, magnitude). The examples of data sets in this format includes tornado events, origins/destination of internet flows, earthquakes, terrorist attacks and etc. It is difficult to visualize the data with simple plotting. This research project studies and implements non-parametric kernel smoothing in Python as a way of visualizing the intensity of point patterns in space and time. A two-dimensional grid M with size mx, my is used to store the calculation result for the kernel smoothing of each grid points. The heat-map in Python then uses the grid to plot the resulting images on a map where the resolution is determined by mx and my. The resulting images also depend on a spatial and a temporal smoothing parameters, which control the resolution (smoothness) of the figure. The Python code is applied to visualize over 56,000 tornado landings in the continental U.S. from the period 1950 - 2014. The magnitudes of the tornado are based on Fujita scale.
- Citation to related publication:
- Hu, Weifeng. “Kernel-based Visualization of Point Patterns in Python with Application to Tornado Landing Data.” (2016). At https://www.semanticscholar.org/paper/Kernel-based-Visualization-of-Point-Patterns-in-to-Hu/0de06a6db39da54fe28f8d0cb47c0d3270f2f831
- Discipline:
- Engineering and Science
-
- Creator:
- Hall, Ryan J. and Larson, Ronald G.
- Description:
- This is data is a large assortment of over 50 1,4-polybutadiene star-linear blends that can be used for assessing and developing predictive models. The data are presented in CSV files.
- Keyword:
- polymers, rheology, star-linear polymer blends, and shear rheology
- Citation to related publication:
- Hall, R., Desai, P. S., Kang, B.-G., Huang, Q., Lee, S., Chang, T., Venerus, D. C., Mays, J., Ntetsikas, K., Polymeropoulos, G., Hadjichristidis, N., & Larson, R. G. (2019). Assessing the Range of Validity of Current Tube Models through Analysis of a Comprehensive Set of Star–Linear 1,4-Polybutadiene Polymer Blends. Macromolecules, 52(20), 7831–7846. https://doi.org/10.1021/acs.macromol.9b00642
- Discipline:
- Science and Engineering
-
- Creator:
- Crisp, Dakota N., Saggio, Maria L., Scott, Jared, Stacey, William C., Nakatani, Mitsuyoshi, Gliske, Stephen V., and Lin, Jack
- Description:
- This data and scripts are meant to test and show seizure differentiation based on bifurcation theory. A zip file is included which contains real and simulated seizure waveforms, Matlab scripts, and metadata. The matlab scripts allow for visual review validation and objective feature analysis. The file “README.txt” provides more detail about each individual file within the zip file. and Data citation: Crisp, D.N., Saggio, M.L., Scott, J., Stacey, W.C., Nakatani, M., Gliske, S.F., Lin, J. (2019). Epidynamics: Navigating the map of seizure dynamics - Code & Data [Data set]. University of Michigan Deep Blue Data Repository. https://doi.org/10.7302/ejhy-5h41
- Keyword:
- Bifurcation, Epilepsy, Seizure, and Divergence
- Citation to related publication:
- Saggio, M.L., Crisp, D., Scott, J., Karoly, P.J., Kuhlmann, L., Nakatani, M., Murai, T., Dümpelmann, M., Schulze-Bonhage, A., Ikeda, A., Cook, M., Gliske, S.V., Lin, J., Bernard, C., Jirsa, V., Stacey, W., 2020. In pre-print. Epidynamics characterize and navigate the map of seizure dynamics. bioRxiv 2020.02.08.940072. https://doi.org/10.1101/2020.02.08.940072
- Discipline:
- Engineering, Science, and Health Sciences
-
- Creator:
- Bougher, Stephen W. (CLaSP Department, U. of Michigan) and Roeten, Kali J. (CLaSP Department, U. of Michigan)
- Description:
- The NASA MAVEN (Mars Atmosphere and Volatile Evolution) spacecraft, which is currently in orbit around Mars, has been taking monthly measurements of the speed and direction of the winds in the upper atmosphere of Mars between about 140 to 240 km above the surface. The observed wind speeds and directions change with time and location, and sometimes fluctuate quickly. These measurements are compared to simulations from a computer model of the Mars atmosphere called M-GITM (Mars Global Ionosphere-Thermosphere Model), developed at U. of Michigan. This is the first comparison between direct measurements of the winds in the upper atmosphere of Mars and simulated winds and is important because it can help to inform us what physical processes are acting on the observed winds. Some wind measurements have similar wind speeds or directions to those predicted by the M-GITM model, but sometimes, there are large differences between the simulated and measured winds. The disagreements between wind observations and model simulations suggest that processes other than normal solar forcing may become relatively more important during these observations and alter the expected circulation pattern. Since the global circulation plays a role in the structure, variability, and evolution of the atmosphere, understanding the processes that drive the winds in the upper atmosphere of Mars provides key context for understanding how the atmosphere behaves as a whole system. A basic version of the M-GITM code can be found on Github as follows: https:/github.com/dpawlows/MGITM and About 30 Neutral Gas and Ion Mass Spectrometer (NGIMS) wind campaigns (of 5 to 10 orbits each) have been conducted by the MAVEN team (Benna et al., 2019). Five of these campaigns are selected for detailed study (Roeten et al. 2019). The Mars conditions for these five campaigns have been used to launch corresponding M-GITM code simulations, yielding 3-D neutral wind fields for comparison to these NGIMS wind observations. The M-GITM datacubes used to extract the zonal and meridional neutral winds, along the trajectory of each orbit path between 140 and 240 km, are provided in this Deep Blue Data archive. README files are provided for each datacube, detailing the contents of each file. A general README file is also provided that summarizes the inputs and outputs of the M-GITM code simulations for this study.
- Keyword:
- Mars, MAVEN spacecraft, Mars thermosphere, and Mars global upper atmosphere winds
- Citation to related publication:
- Roeten, K. J., Bougher, S. W., Benna, M., Mahaffy, P. R., Lee, Y., Pawlowski, D., et al. (2019). MAVEN/NGIMS thermospheric neutral wind observations: Interpretation using the M‐GITM general circulation model. Journal of Geophysical Research: Planets, 124, 3283– 3303. https://doi.org/10.1029/2019JE005957
- Discipline:
- Science and Engineering