In an earlier study (Xue et al. Nature Materials 2018), stem cells differentiated into one of two cell types, neural plate border (NPB) or neural plate (NP), in vitro. This previous study demonstrated that this differentiation is likely mechanics-guided. Part of this demonstration was measurements of the displacement of microposts under the cell layer as the cells differentiate. These measurements suggested that the NPB cells are more contractile than NP cells. In a follow-up study (linked to this dataset), we quantitatively analyzed these data to demonstrate even further that the NPB cells are mechanically different than the NP cells and that the post displacement profile is not explained by a model of a cell layer with uniform mechanical properties. This analysis motivated the mathematical model -- for this cell colony system -- that we proposed and analyzed.
Hayden Nunley, Xufeng Xue, Jianping Fu, David K. Lubensky bioRxiv 2021.04.30.442205; doi: https://doi.org/10.1101/2021.04.30.442205 and Xue X, Sun Y, Resto-Irizarry A.M. et al. Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nature Mater 17, 633–641 (2018). https://doi.org/10.1038/s41563-018-0082-9