The work guides the processing of CAM6 data for use in machine learning applications. We also provide workflow scripts for training both random forests and neural networks to emulate physic s schemes from the data, as well as analysis scripts written in both Python and NCL in order to process our results.
Limon, G. C., Jablonowski, C. (2022) Probing the Skill of Random Forest Emulators for Physical Parameterizations via a Hierarchy of Simple CAM6 Configurations [Pre Print]. ESSOAr. https://10.1002/essoar.10512353.1
The collection contains the code and the data used to train machine learning algorithms to emulate simplified physical parameterizations within the Community Atmosphere Model (CAM6). CAM6 is the atmospheric general circulation model (GCM) within the Community Earth System Model (CESM) framework, developed by the National Center for Atmospheric Research (NCAR). GCMs are made up of a dynamical core, responsible for the geophysical fluid flow calculations, and physical parameterization schemes, which estimate various unresolved processes. Simple physics schemes were used to train both random forests and neural networks in the interest of exploring the feasibility of machine learning techniques being used in conjunction with the dynamical core for improved efficiency of future climate and weather models. The results of the research show that various physical forcing tendencies and precipitation rates can be effectively emulated by the machine learning models.
The data represents weekly output from three 60-year CAM6 model runs. The output includes state (.h0. files) and tendency (.h1. files) fields for three difference model configurations of increasing complexity. State fields include temperature, surface pressure, specific humidity, among others; while tendencies include temperature tendencies, specific humidity tendencies, as well as precipitation rates. Using the state variables at a given time step, machine learning techniques can be trained to predict the following tendency field, which can then be applied to the state variables to provide the state at the next physics time step of the model.
Limon, G. C., Jablonowski, C. (2022) Probing the Skill of Random Forest Emulators for Physical Parameterizations via a Hierarchy of Simple CAM6 Configurations [Preprint]. ESSOAr. https://10.1002/essoar.10512353.1