In this study, we show that coronal mass ejection (CME) simulations conducted with the Space Weather Modeling Framework (SWMF) can be assimilated with SOHO LASCO white-light (WL) coronagraph observations and solar wind observations at L1 prior to the CME eruption to improve the prediction of CME arrival time. L1 observations are used to constrain the background solar wind, while LASCO coronagraph observations filter the initial ensemble simulations by constraining the simulated CME propagation speed. We then construct probabilistic predictions for CME arrival time using the data-assimilated ensemble. Scripts in this work are written in R, Python and Julia.
This research was completed to statistically validate that a data-model refinement technique could integrate real measurements to remove bias from physics-based models via changing the forcing parameters such as the thermal conductivity coefficients.
Ponder, B. M., Ridley, A. J., Goel, A., & Bernstein, D. S. (2023). Improving forecasting ability of GITM using data-driven model refinement. Space Weather, 21, e2022SW003290. https://doi.org/10.1029/2022SW003290