Search Constraints
Filtering by:
Keyword
machine learning
Remove constraint Keyword: machine learning
Discipline
Science
Remove constraint Discipline: Science
1 - 3 of 3
Number of results to display per page
View results as:
Search Results
-
- Creator:
- Raymond, Matt, Elvati, Paolo, Saldinger, Jacob C, Lin, Jonathan, Shi, Xuetao, and Violi, Angela
- Description:
- Nanoparticles (NPs) formed in nonthermal plasmas (NTPs) can have unique properties and applications. However, modeling their growth in these environments presents significant challenges due to the non-equilibrium nature of NTPs, making them computationally expensive to describe. In this work, we address the challenges associated with accelerating the estimation of parameters needed for these models. Specifically, we explore how different machine learning models can be tailored to improve prediction outcomes. We apply these methods to reactive classical molecular dynamics data, which capture the processes associated with colliding silane fragments in NTPs. These reactions exemplify processes where qualitative trends are clear, but their quantification is challenging, hard to generalize, and requires time-consuming simulations. Our results demonstrate that good prediction performance can be achieved when appropriate loss functions are implemented and correct invariances are imposed. While the diversity of molecules used in the training set is critical for accurate prediction, our findings indicate that only a fraction (15-25%) of the energy and temperature sampling is required to achieve high levels of accuracy. This suggests a substantial reduction in computational effort is possible for similar systems.
- Keyword:
- machine learning, molecular dynamics, nanoparticle, nonthermal plasma, silane, and sticking coefficient
- Citation to related publication:
- Raymond, M., Elvati, P., Saldinger, J. C., Lin, J., Shi, X., & Violi, A. (2025). Machine learning models for Si nanoparticle growth in nonthermal plasma. Plasma Sources Science and Technology. https://doi.org/10.1088/1361-6595/adbae1 and https://arxiv.org/abs/2501.00003
- Discipline:
- Science
-
- Creator:
- Swiger, Brian M., Liemohn, Michael W., and Ganushkina, Natalia Y.
- Description:
- We sampled the near-Earth plasma sheet using data from the NASA Time History of Events and Macroscale Interactions During Substorms mission. For the observations of the plasma sheet, we used corresponding interplanetary observations using the OMNI database. We used these data to develop a data-driven model that predicts plasma sheet electron flux from upstream solar wind variations. The model output data are included in this work, along with code for analyzing the model performance and producing figures used in the related publication. and Data files are included in hdf5 and Python pickle binary formats; scripts included are set up for use of Python 3 to access and process the pickle binary format data.
- Keyword:
- neural network, plasma sheet, solar wind, machine learning, keV electron flux, deep learning, and space weather
- Citation to related publication:
- Swiger, B. M., Liemohn, M. W., & Ganushkina, N. Y. (2020). Improvement of Plasma Sheet Neural Network Accuracy With Inclusion of Physical Information. Frontiers in Astronomy and Space Sciences, 7. https://doi.org/10.3389/fspas.2020.00042
- Discipline:
- Science and Engineering
-
- Creator:
- Chen, Yang and Manchester, Ward IV
- Description:
- GOES_flare_list: contains a list of more than 10,000 flare events. The list has 6 columns, flare classification, active region number, date, start time end time, emission peak time, GOES_B_flare_list: contains time series data of SDO/HMI SHARP parameters for B class solar flares , GOES_MX_flare_list: contains time series data of SDO/HMI SHARP parameters for M and X class solar flares, SHARP_B_flare_data_300.hdf5 and SHARP_MX_flare_data_300.hdf5 files contain time series more than 20 physical variables derived from the SDO/HMI SHARP data files. These data are saved at a 12 minute cadence and are used to train the LSTM model., and B_HARPs_CNNencoded_part_xxx.hdf5 and M_X HARPs_CNNencoded_part_xxx.hdf5 include neural network encoded features derived from vector magnetogram images derived from the Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager (HMI). These data files typically contains one or two sequences of magnetograms covering an active region for a period of 24h with a 1 hour cadence. We encode each magnetogram with frames of a fixed size of 8x16 with 512 channels.
- Keyword:
- machine learning, data science, and solar flare prediction
- Citation to related publication:
- Chen, Y., Manchester, W., Hero, A., Toth, G., DuFumier, B. Zhou, T., Wang, X., Zhu, H., Sun, Zeyu, Gombosi, T., Identifying Solar Flare Precursors Using Time Series of SDO/HMI Images and SHARP Parameters, Space Weather, 17, 1404–1426. https://doi.org/10.1029/2019SW002214 and Jiao, Z., Chen, Y., Manchester, W. (2020). Data for Solar Flare Intensity Prediction with Machine Learning Models [Data set]. University of Michigan - Deep Blue. https://doi.org/10.7302/b07j-bj08
- Discipline:
- Engineering and Science