Show simple item record

Test particle comparison of heavy atomic and molecular ion distributions at Mars

dc.contributor.authorCurry, S. M.en_US
dc.contributor.authorLiemohn, M.en_US
dc.contributor.authorFang, X.en_US
dc.contributor.authorMa, Y.en_US
dc.contributor.authorSlavin, J.en_US
dc.contributor.authorEspley, J.en_US
dc.contributor.authorBougher, S.en_US
dc.contributor.authorDong, C. F.en_US
dc.date.accessioned2014-05-23T15:59:34Z
dc.date.available2015-05-04T14:37:25Zen_US
dc.date.issued2014-03en_US
dc.identifier.citationCurry, S. M.; Liemohn, M.; Fang, X.; Ma, Y.; Slavin, J.; Espley, J.; Bougher, S.; Dong, C. F. (2014). "Test particle comparison of heavy atomic and molecular ion distributions at Mars." Journal of Geophysical Research: Space Physics 119(3): 2328-2344.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106919
dc.publisherMcGraw‐Hillen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherKineticen_US
dc.subject.otherUnmagnetizeden_US
dc.subject.otherIMFen_US
dc.subject.otherVolatilesen_US
dc.subject.otherMarsen_US
dc.subject.otherIonen_US
dc.titleTest particle comparison of heavy atomic and molecular ion distributions at Marsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106919/1/jgra50899.pdf
dc.identifier.doi10.1002/2013JA019221en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceLundin, R., S. Barabash, M. Yamauchi, H. Nilsson, and D. Brain ( 2011b ), On the relation between plasma escape and the Martian crustal magnetic field, Geophys. Res. Lett., 38, L02102, doi: 10.1029/2010GL046019.en_US
dc.identifier.citedreferenceKallio, E., K. Liu, R. Jarvinen, V. Pohjola, and P. Janhunen ( 2010 ), Oxygen ion escape at Mars in a hybrid model: High energy and low energy ions, Icarus, 206 ( 1 ), 152 – 163, doi: 10.1016/j.icarus.2009.05.015.en_US
dc.identifier.citedreferenceKallio, E., et al. ( 2006 ), Ion escape at Mars: Comparison of a 3‐D hybrid simulation with Mars Express IMA/ASPERA‐3 measurements, Icarus, 182 ( 2 ), 350 – 359, doi: 10.1016/j.icarus.2005.09.018.en_US
dc.identifier.citedreferenceKallio, E., et al. ( 2007 ), Energisation of O + and O 2 + ions at Mars: An analysis of a 3‐D quasi‐neutral hybrid model simulation, Space Sci. Rev., 126 ( 1‐4 ), 39 – 62, doi: 10.1007/s11214‐006‐9120‐z.en_US
dc.identifier.citedreferenceKim, J., A. Nagy, J. L. Fox, and T. E. Cravens ( 1998 ), Solar cycle variability of hot oxygen atoms at Mars, J. Geophys. Res., 103, 339 – 342.en_US
dc.identifier.citedreferenceLeblanc, F., and R. E. Johnson ( 2002 ), Role of molecular species in pickup ion sputtering of the Martian atmosphere, J. Geophys. Res., 107 ( E2 ), 5010, doi: 10.1029/2000JE001473.en_US
dc.identifier.citedreferenceLiemohn, M. W., S. M. Curry, X. Fang, and Y. Ma ( 2013 ), Comparison of high‐altitude production and ionospheric outflow contributions to O + loss at Mars, J. Geophys. Res. Space Physics, 118, 4093 – 4107, doi: 10.1002/jgra.50388.en_US
dc.identifier.citedreferenceLuhmann, J. G., and J. U. Kozyra ( 1991 ), Dayside pickup oxygen ion precipitation at Venus and Mars spatial distributions energy deposition and consequences, J. Geophys. Res., 96, 5457 – 5467.en_US
dc.identifier.citedreferenceLuhmann, J. G., and K. Schwingenschuh ( 1990 ), A model of the energetic ion environment of Mars, J. Geophys. Res., 95 ( A2 ), 939 – 945, doi: 10.1029/JA095iA02p00939.en_US
dc.identifier.citedreferenceLundin, R., S. Barabash, M. Holmström, H. Nilsson, M. Yamauchi, E. M. Dubinin, and M. Fraenz ( 2009 ), Atmospheric origin of cold ion escape from Mars, Geophys. Res. Lett., 36, L17202, doi: 10.1029/2009GL039341.en_US
dc.identifier.citedreferenceLundin, R., S. Barabash, E. Dubinin, D. Winningham, and M. Yamauchi ( 2011a ), Low‐altitude acceleration of ionospheric ions at Mars, Geophys. Res. Lett., 38, L08108, doi: 10.1029/2011GL047064.en_US
dc.identifier.citedreferenceMa, Y., A. Nagy, I. V. Sokolov, and K. C. Hansen ( 2004 ), Three‐dimensional, multispecies, high spatial resolution mhd studies of the solar wind interaction with Mars, J. Geophys. Res., 109, A07211, doi: 10.1029/2003JA010367.en_US
dc.identifier.citedreferenceMa, Y.‐J., and A. F. Nagy ( 2007 ), Ion escape fluxes from Mars, Geophys. Res. Lett., 34, L08201, doi: 10.1029/2006GL029208.en_US
dc.identifier.citedreferenceManning, C. V., Y. Ma, D. A. Brain, C. P. McKay, and K. J. Zahnle ( 2011 ), Parametric analysis of modeled ion escape from Mars, Icarus, 212 ( 1 ), 131 – 137, doi: 10.1016/j.icarus.2010.11.028.en_US
dc.identifier.citedreferenceMartinis, C. R., J. K. Wilson, and M. Mendillo ( 2003 ), Modeling day‐to‐day ionospheric variability on Mars, J. Geophys. Res., 108 ( A10 ), 1383, doi: 10.1029/2003JA009973.en_US
dc.identifier.citedreferenceModolo, R., G. Chanteur, E. Dubinin, and A. Matthews ( 2005 ), Influence of the solar euv flux on the Martian plasma environment, Ann. Geophys., 23, 433 – 444.en_US
dc.identifier.citedreferenceNagy, A., et al. ( 2004 ), The plasma environment of Mars, Space Sci. Rev., 111, 33 – 114.en_US
dc.identifier.citedreferenceNajib, D., A. F. Nagy, G. Tóth, and Y. Ma ( 2011 ), Three‐dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars, J. Geophys. Res., 116, A05204, doi: 10.1029/2010JA016272.en_US
dc.identifier.citedreferenceNilsson, H., N. J. T. Edberg, G. Stenberg, S. Barabash, M. Holmström, Y. Futaana, R. Lundin, and A. Fedorov ( 2011 ), Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields, Icarus, 215 ( 2 ), 475 – 484, doi: 10.1016/j.icarus.2011.08.003.en_US
dc.identifier.citedreferenceNilsson, H., G. Stenberg, S. Futaana, M. Holmstrom, S. Barabash, R. Lundin, N. Edberg, and A. Fedorov ( 2012 ), Ion distributions in the vicinity of Mars: Signatures of heating and acceleration processes, Earth Planets Space, 64 ( 2 ), 135 – 148, doi: 10.5047/eps.2011.04.011.en_US
dc.identifier.citedreferenceSchunk, R., and A. Nagy ( 2000 ), Ionospheres, Cambridge Univ. Press, Cambridge, U.K.en_US
dc.identifier.citedreferenceTerada, N., Y. N. Kulikov, H. Lammer, H. I. Lichtenegger, T. Tanaka, H. Shinagawa, and T. Zhang ( 2009 ), Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions, Astrobiology, 9 ( 1 ), 55 – 70, doi: 10.1089/ast.2008.0250.en_US
dc.identifier.citedreferenceValeille, A., M. R. Combi, S. W. Bougher, V. Tenishev, and A. F. Nagy ( 2009a ), Three‐dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations, and evolution over history, J. Geophys. Res., 114, E11006, doi: 10.1029/2009JE003389.en_US
dc.identifier.citedreferenceValeille, A., V. Tenishev, S. W. Bougher, M. R. Combi, and A. F. Nagy ( 2009b ), Three‐dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 1. General description and results at equinox for solar low conditions, J. Geophys. Res., 114, E11005, doi: 10.1029/2009JE003388.en_US
dc.identifier.citedreferenceValeille, A., M. Combi, V. Tenishev, S. W. Bougher, and A. Nagy ( 2010 ), A study of suprathermal oxygen atoms in Mars upper thermosphere and exosphere over the range of limiting conditions, Icarus, 206, 18 – 27, doi: 10.1016/j.icarus.2008.08.018.en_US
dc.identifier.citedreferenceYagi, M., F. Leblanc, J. Y. Chaufray, F. Gonzalez‐Galindo, S. Hess, and R. Modolo ( 2012 ), Mars exospheric thermal and non‐thermal components: Seasonal and local variations, Icarus, 221 ( 2 ), 682 – 693, doi: 10.1016/j.icarus.2012.07.022.en_US
dc.identifier.citedreferenceYamauchi, M., et al. ( 2007 ), IMF direction derived from cycloid‐like ion distributions observed by Mars Express, Space Sci. Rev., 126 ( 1‐4 ), 239 – 266, doi: 10.1007/s11214‐006‐9090‐1.en_US
dc.identifier.citedreferenceAcuna, M. H., et al. ( 1999 ), Global distribution of crustal magnetization discovered by the Mars global surveyor MAG/ER experiment, Science, 284 ( 5415 ), 790 – 793, doi: 10.1126/science.284.5415.790.en_US
dc.identifier.citedreferenceArkani‐Hamed, J. ( 2001 ), A 50‐degree spherical harmonic model of the magnetic field of Mars, J. Geophys. Res., 106, 197 – 208.en_US
dc.identifier.citedreferenceBarabash, S., and M. Holmstrom ( 2002 ), Energetic neutral atoms at Mars 4. Imaging of planetary oxygen, J. Geophys. Res., 107 ( A10 ), 1280, doi: 10.1029/2001JA000326.en_US
dc.identifier.citedreferenceBarabash, S., A. Fedorov, R. Lundin, and J. A. Sauvaud ( 2007 ), Martian atmospheric erosion rates, Science, 315 ( 5811 ), 501 – 503, doi: 10.1126/science.1134358.en_US
dc.identifier.citedreferenceBirdsall, C. K., and A. B. Langdon ( 1985 ), Plasma Physics Via Computer Simulation, 1st ed., McGraw‐Hill, New York.en_US
dc.identifier.citedreferenceBougher, S. W., and S. Engel ( 2000 ), Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices, J. Geophys. Res., 105, 669 – 692.en_US
dc.identifier.citedreferenceBougher, S. W., S. Engel, D. Hinson, and J. Murphy ( 2004 ), MGS Radio Science electron density profiles: Interannual variability and implications for the Martian neutral atmosphere, J. Geophys. Res., 109, E03010, doi: 10.1029/2003JE002154.en_US
dc.identifier.citedreferenceBougher, S. W., J. M. Bell, J. R. Murphy, M. A. Lopez‐Valverde, and P. G. Withers ( 2006 ), Polar warming in the Mars thermosphere: Seasonal variations owing to changing insolation and dust distributions, Geophys. Res. Lett., 33, L02203, doi: 10.1029/2005GL024059.en_US
dc.identifier.citedreferenceBougher, S. W., P. Blelly, M. Combi, J. L. Fox, I. Mueller‐Wodarg, A. Ridley, and R. Roble ( 2008 ), Neutral upper atmosphere and ionosphere modeling, Space Sci. Rev., 139, 107 – 141.en_US
dc.identifier.citedreferenceBrecht, S. H., and S. A. Ledvina ( 2006 ), The solar wind interaction with the Martian ionosphere/atmosphere, Space Sci. Rev., 126 ( 1‐4 ), 15 – 38, doi: 10.1007/s11214‐006‐9084‐z.en_US
dc.identifier.citedreferenceChaufray, J. Y., R. Modolo, F. Leblanc, G. Chanteur, R. E. Johnson, and J. G. Luhmann ( 2007 ), Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space, J. Geophys. Res., 112, E09009, doi: 10.1029/2007JE002915.en_US
dc.identifier.citedreferenceCipriani, F., F. Leblanc, and J. J. Berthelier ( 2007 ), Martian corona: Nonthermal sources of hot heavy species, J. Geophys. Res., 112, E07001, doi: 10.1029/2006JE002818.en_US
dc.identifier.citedreferenceCravens, T. E., J. U. Kozyra, A. Nagy, T. Gombosi, and M. Kurtz ( 1987 ), Electron impact ionization in the vicinity of comets, J. Geophys. Res., 92, 7341 – 7353.en_US
dc.identifier.citedreferenceCurry, S. M., M. Liemohn, X. Fang, D. Brain, and Y. Ma ( 2013a ), Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars, J. Geophys. Res. Space Physics, 118, 3700 – 3711, doi: 10.1002/jgra.50358.en_US
dc.identifier.citedreferenceCurry, S. M., M. Liemohn, X. Fang, Y. Ma, and J. Espley ( 2013b ), The influence of production mechanisms on pick‐up ion loss at Mars, J. Geophys. Res. Space Physics, 118, 554 – 569, doi: 10.1029/2012JA.017665.en_US
dc.identifier.citedreferenceDubinin, E., M. Fraenz, A. Fedorov, R. Lundin, N. Edberg, F. Duru, and O. Vaisberg ( 2011 ), Ion energization and escape on Mars and Venus, Space Sci. Rev., 162 ( 1‐4 ), 173 – 211, doi: 10.1007/s11214‐011‐9831‐7.en_US
dc.identifier.citedreferenceErgun, R. E., L. Andersson, W. K. Peterson, D. Brain, G. T. Delory, D. L. Mitchell, R. P. Lin, and A. W. Yau ( 2006 ), Role of plasma waves in Mars' atmospheric loss, Geophys. Res. Lett., 33, L14103, doi: 10.1029/2006GL025785.en_US
dc.identifier.citedreferenceFang, X., M. W. Liemohn, A. F. Nagy, Y. Ma, D. L. De Zeeuw, J. U. Kozyra, and T. H. Zurbuchen ( 2008 ), Pickup oxygen ion velocity space and spatial distribution around Mars, J. Geophys. Res., 113, A02210, doi: 10.1029/2007JA012736.en_US
dc.identifier.citedreferenceFang, X., M. W. Liemohn, A. F. Nagy, J. G. Luhmann, and Y. Ma ( 2010a ), On the effect of the Martian crustal magnetic field on atmospheric erosion, Icarus, 206 ( 1 ), 130 – 138, doi: 10.1016/j.icarus.2009.01.012.en_US
dc.identifier.citedreferenceFang, X., M. W. Liemohn, A. F. Nagy, J. G. Luhmann, and Y. Ma ( 2010b ), Escape probability of Martian atmospheric ions: Controlling effects of the electromagnetic fields, J. Geophys. Res., 115, A04308, doi: 10.1029/2009JA014929.en_US
dc.identifier.citedreferenceFox, J. L. ( 2009 ), Morphology of the dayside ionosphere of Mars: Implications for ion outflows, J. Geophys. Res., 114, E12005, doi: 10.1029/2009JE003432.en_US
dc.identifier.citedreferenceFox, J. L., and A. Hac ( 1997 ), Spectrum of hot O at the exobases of the terrestrial planets, J. Geophys. Res., A11, 24,005 – 24,011, doi: 10.1029/97JA02089.en_US
dc.identifier.citedreferenceFox, J. L., and K. Sung ( 2001 ), Solar activity variations of the Venus thermosphere/ionosphere, J. Geophys. Res., 106, 305 – 335.en_US
dc.identifier.citedreferenceFraenz, M., et al. ( 2006 ), Plasma intrusion above Mars crustal fields—Mars Express ASPERA‐3 observations, Icarus, 182 ( 2 ), 406 – 412, doi: 10.1016/j.icarus.2005.11.016.en_US
dc.identifier.citedreferenceHartle, R. E., M. Sarantos, and E. C. Sittler ( 2011 ), Pickup ion distributions from three‐dimensional neutral exospheres, J. Geophys. Res., 116, A10101, doi: 10.1029/2011JA016859.en_US
dc.identifier.citedreferenceKallio, E. ( 2002 ), Ion escape from Mars in a quasi‐neutral hybrid model, J. Geophys. Res., 107 ( A3 ), SIA1.1 – SIA1.21, doi: 10.1029/2001JA000090.en_US
dc.identifier.citedreferenceKallio, E., A. Fedorov, E. Budnik, S. Barabash, R. Jarvinen, and P. Janhunen ( 2008 ), On the properties of O + and O 2 + ions in a hybrid model and in Mars Express IMA/ASPERA‐3 data: A case study, Planet. Space Sci., 56 ( 9 ), 1204 – 1213, doi: 10.1016/j.pss.2008.03.007.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.